Chapter 2: Problem 20
Let f be a function such that \(f(x)>0\) Assume that f has derivatives of all orders and that \(\ln f(x)=f(x) \int_{0}^{x} f(t) d t\). Find (i) \(\mathrm{f}(0)\), (ii) \(\mathrm{f}^{(1)}(0)\), (iii) \(\mathrm{f}^{2)}(0)\).
Chapter 2: Problem 20
Let f be a function such that \(f(x)>0\) Assume that f has derivatives of all orders and that \(\ln f(x)=f(x) \int_{0}^{x} f(t) d t\). Find (i) \(\mathrm{f}(0)\), (ii) \(\mathrm{f}^{(1)}(0)\), (iii) \(\mathrm{f}^{2)}(0)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that for each integer \(\mathrm{m}>1\), \(\ln 1+\ln 2+\ldots+\ln (m-1)
Let \(\mathrm{f}(\mathrm{x})=\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}\). Shows that \(\int_{c-h}^{c+h} f(x) d x=\frac{h}{3}[f(c-h)+4 f(c)+f(c+h)] .\)
Evaluate the following integrals : (i) \(\int_{0}^{a} x\left(a^{2}-x^{2}\right)^{\frac{7}{2}}\) d (ii) \(\int_{0}^{2} x^{3 / 2} \sqrt{2-x} d x\) (iii) \(\int_{0}^{1} x^{3}\left(1-x^{2}\right)^{5 / 2} d x\) (iv) \(\int_{0}^{2 a} x^{5} \sqrt{\left(2 a x-x^{2}\right)} d x\)
Evaluate \(\int_{0}^{1}\left(\sqrt[3]{1-x^{7}}-\sqrt[7]{1-x^{3}}\right) d x\)
Let \(\mathrm{P}_{\mathrm{n}}\) denote the polynomial of degree \(\mathrm{n}\) given by \(\mathrm{P}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}+\frac{\mathrm{x}^{2}}{2}+\frac{\mathrm{x}^{3}}{3}+\ldots .+\frac{\mathrm{x}^{\mathrm{n}}}{\mathrm{n}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\mathrm{x}^{\mathrm{k}}}{\mathrm{k}}\). Then, for every \(x<1\) and every \(n \geq 1\), prove that \(-\ln (1-x)=P_{n}(x)+\int_{0}^{x} \frac{u^{n}}{1-u} d u\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.