Chapter 2: Problem 20
If \(\mathrm{I}_{\mathrm{n}}=\int_{0}^{1}\left(1-\mathrm{x}^{3}\right)^{\mathrm{n}} \mathrm{d} \mathrm{x}\), prove that \(\mathrm{I}_{\mathrm{n}}=\frac{3 \mathrm{n}}{3 \mathrm{n}+1} \mathrm{I}_{\mathrm{n}-1} .\) Hence, evaluate \(\frac{{ }^{\mathrm{n}} \mathrm{C}_{0}}{1}-\frac{{ }^{\mathrm{n}} \mathrm{C}_{1}}{4}+\frac{{ }^{\mathrm{n}} \mathrm{C}_{2}}{7}-\ldots\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.