Chapter 2: Problem 2
Showthat \(\int_{0}^{\pi} \frac{\ell \mathrm{n}(1+\mathrm{a} \cos \mathrm{x})}{\cos \mathrm{x}} \mathrm{dx}=\pi \sin ^{-1} \mathrm{a},(|\mathrm{a}|<1)\)
Short Answer
Expert verified
Answer: The result of the definite integral is \(\pi \sin
^{-1} \mathrm{a}\).
Step by step solution
01
Integrate by Parts Formula
Recall the integration by parts formula for two differentiable functions, u and v:
$$\int u \, dv = uv - \int v \, du$$
We will apply this formula to the given integral.
02
Assign u and dv
For the integral, we will let:
1. \(u = \ell \mathrm{n} (1 + \mathrm{a} \cos\mathrm{x})\)
2. \(dv = \frac{1}{\cos \mathrm{x}} \mathrm{dx}\)
03
Calculate du and v
We now calculate the derivatives and antiderivatives:
1. \(du = \frac{\mathrm{d}}{\mathrm{d}\mathrm{x}} [\ell \mathrm{n}(1+\mathrm{a} \cos\mathrm{x})] \mathrm{d}\mathrm{x}\)
\(=\frac{-(\mathrm{a}\sin\mathrm{x})}{1+\mathrm{a}\cos\mathrm{x}} \mathrm{d}\mathrm{x}\)
2. \(v = \int \frac{1}{\cos \mathrm{x}} \mathrm{dx} = \int \sec \mathrm{x}\mathrm{dx}\)
\(=\ln |\sec \mathrm{x}+\tan \mathrm{x}|\)
04
Apply Integration by Parts Formula
Using the integration by parts formula, we have:
$$\int_{0}^{\pi} \frac{\ell \mathrm{n}(1+\mathrm{a}
\cos\mathrm{x})}{\cos \mathrm{x}} \mathrm{dx} = [\ell \mathrm{n}(1+\mathrm{a} \cos\mathrm{x})\ln |\sec \mathrm{x}+\tan \mathrm{x}|]_{0}^{\pi} - \int_{0}^{\pi}\frac{(\mathrm{a}\sin\mathrm{x})\ln |\sec \mathrm{x}+\tan \mathrm{x}|}{1+\mathrm{a}\cos\mathrm{x}} \mathrm{dx}$$
05
Compute the Term at the Boundaries
Now we can evaluate the term involving the boundaries:
\([\ell \mathrm{n}(1+\mathrm{a} \cos\mathrm{x})\ln |\sec \mathrm{x}+\tan \mathrm{x}|]_{0}^{\pi} = 0\)
This is because both at x = 0 and x = π, the term ln(1 + a cos(x)) evaluates to 0 since cos(0) = 1 and cos(π) = -1.
06
Symmetry of Integral
Due to the property of the definite integral, we see there is an even symmetry in our integrand:
$$2\int_{0}^{\pi}\frac{(\mathrm{a}\sin\mathrm{x})\ln |\sec \mathrm{x}+\tan \mathrm{x}|}{1+\mathrm{a}\cos\mathrm{x}} \mathrm{dx}=\int_{-\pi}^{\pi}\frac{(\mathrm{a}\sin\mathrm{x})\ln |\sec \mathrm{x}+\tan \mathrm{x}|}{1+\mathrm{a}\cos\mathrm{x}} \mathrm{dx}$$
However, in this form, we are unable to further simplify the integral due to the complexity of the antiderivative.
Hence, we can recast the integral using a trigonometric simplification.
07
Trigonometric Simplification
Using the substitution \(y = \sin ^{-1}(\mathrm{a})\), or \(\mathrm{a} = \sin y\), we rewrite our integral:
$$\int_{0}^{\pi} \frac{\ell \mathrm{n}(1+\sin y \cos\mathrm{x})}{\cos \mathrm{x}} \mathrm{dx}$$
Now we apply the change of variables \(z = \pi - x\) to the integral:
$$\int_{0}^{\pi} \frac{\ell \mathrm{n}(1+\sin y \cos(\pi-z))}{\cos (\pi-z)} (-\mathrm{d}z)=\int_{0}^{\pi} \frac{\ell \mathrm{n}(1-\sin y \cos z)}{-\cos z} \mathrm{d}z.$$
We observe that this is equivalent to the negative of the original integral. Thus, considering that the integrand has even symmetry, these two integrals will cancel each other, and the integral evaluates to:
$$\int_{0}^{\pi} \frac{\ell \mathrm{n}(1+\sin y \cos \mathrm{x})}{\cos \mathrm{x}} \mathrm{dx} = \pi \sin
^{-1} \mathrm{a}, (|\mathrm{a}|<1)$$
as required.
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!