Chapter 2: Problem 2
Show that for any number \(\mathrm{a}>1\) \(\int_{1}^{a} \ln x d x+\int_{0}^{\ln a} \mathrm{e}^{y} d y=a \ln a\)
Chapter 2: Problem 2
Show that for any number \(\mathrm{a}>1\) \(\int_{1}^{a} \ln x d x+\int_{0}^{\ln a} \mathrm{e}^{y} d y=a \ln a\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that (i) \(\frac{99 \pi}{400}<\int_{1}^{100} \frac{\tan ^{-1} x}{x^{2}} d x<\frac{99 \pi}{200}\) (ii) \(\frac{609(\ln 2)^{2}}{4}<\int_{2}^{5} x^{3}(\ln x)^{2} d x<\frac{609(\ln 5)^{2}}{4}\) (iii) \(\left(1-\mathrm{e}^{-1}\right) \ln 10<\int_{1}^{10} \frac{1-\mathrm{e}^{-x}}{\mathrm{x}} \mathrm{dx}<\ln 10\) (iv) \(\frac{1}{10 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{9}}{\sqrt{1+x}} d x \leq \frac{1}{10}\).
\begin{aligned} &\text { Integrating by parts, prove that }\\\ &0<\int_{100 \pi}^{200 \pi} \frac{\cos \mathrm{x}}{\mathrm{x}} \mathrm{dx}<\frac{1}{100 \pi} \end{aligned}
One of the numbers \(\pi, \pi / 2,35 \pi / 128,1-\pi\) is the correct value of the integral \(\int_{0}^{\pi} \sin ^{8} x d x\). Use the graph of \(\mathrm{y}=\sin ^{8} \mathrm{x}\) and a logical process of elimination to find the correct value.
Prove the inequalities: (i) \(\int_{1}^{3} \sqrt{x^{4}+1} d x \geq \frac{26}{3}\)(iii) \(\frac{1}{17} \leq \int_{1}^{2} \frac{1}{1+x^{4}} \mathrm{dx} \leq \frac{7}{24}\).
Show that \(\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{dx}=\int_{0}^{1} \sqrt{-\ell \text { ny }}\) dy by interpreting th -
What do you think about this solution?
We value your feedback to improve our textbook solutions.