Chapter 2: Problem 2
Prove that if \(J_{m}=\int_{1}^{e} \ln ^{m} x d x\), then \(J_{m}=e-m J_{m-1^{\prime}}\) ( \(\mathrm{m}\) is a positive integer).
Chapter 2: Problem 2
Prove that if \(J_{m}=\int_{1}^{e} \ln ^{m} x d x\), then \(J_{m}=e-m J_{m-1^{\prime}}\) ( \(\mathrm{m}\) is a positive integer).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the integrals (i) \(\int_{0}^{b} \frac{x d x}{(1+x)^{3}}\) (ii) \(\int_{0}^{b} \frac{x^{2} d x}{(1+x)^{4}}\) and show that they converge to finite limits as \(\mathrm{b} \rightarrow \infty\)
Evaluate the following integrals: (i) \(\int_{0}^{\pi / 2} \sin ^{5} x \cos ^{4} x d x\) (ii) \(\int_{0}^{\frac{\pi}{2}} \sin ^{7} x \cos ^{4} x d x\) (iii) \(\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{5} x d x\) (iv) \(\int_{0}^{\pi} \sin ^{6} \frac{x}{2} \cos ^{8} \frac{x}{2} d x\)
Given that f satisfies \(|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})| \leq|\mathrm{u}-\mathrm{v}|\) for \(\mathrm{u}\) and \(v\) in \([a, b]\) then prove that (i) \(\mathrm{f}\) is continuous in \([\mathrm{a}, \mathrm{b}]\) and (ii) \(\left|\int_{a}^{b} f(x) d x-(b-a) f(a)\right| \leq \frac{(b-a)^{2}}{2}\).
If each case, give an example of a continuous function \(\mathrm{f}\) satisfying the conditions stated for all real \(\mathrm{x}\), or else explain why there is no such function : (a) \(\int_{0}^{x} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\mathrm{e}^{x}\) (b) \(\int_{0}^{x^{2}} f(t) d t=1-2^{x^{2}}\). (c) \(\int_{0}^{x} f(t) d t f^{2}(x)-1\).
Let \(\mathrm{f}\) be a function. Show that there is a parabola \(\mathrm{y}=\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}\) that passes through the three points \((-\mathrm{h}, \mathrm{f}(-\mathrm{h})),(0, \mathrm{f}(0))\), and \((\mathrm{h}, \mathrm{f}(\mathrm{h}))\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.