Chapter 2: Problem 2
If \(|x|<1\) then find the sum of the series \(\frac{1}{1+x}+\frac{2 x}{1+x^{2}}+\frac{4 x^{3}}{1+x^{4}}+\frac{8 x^{7}}{1+x^{8}}+\ldots \ldots \infty\)
Chapter 2: Problem 2
If \(|x|<1\) then find the sum of the series \(\frac{1}{1+x}+\frac{2 x}{1+x^{2}}+\frac{4 x^{3}}{1+x^{4}}+\frac{8 x^{7}}{1+x^{8}}+\ldots \ldots \infty\)
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(0.78<\int_{0}^{1} \frac{d x}{\sqrt{1+x^{4}}}<0.93\)
Prove that \(\int_{0}^{1} x^{n} \ln x d x=\frac{1}{(n+1)^{2}}, \quad n>-1\)
Prove that (i) \(\int_{1}^{2} \frac{d x}{x^{3}+3 x+1}<\frac{1}{5}\) (ii) \(3 \sqrt{23}<\int_{2}^{5} \sqrt{3 \mathrm{x}^{3}-1} \mathrm{dx}<10 \sqrt{15}-8 \sqrt{6} / 5\) (iii) \(2<\int_{0}^{4} \frac{d x}{1+\sin ^{2} x}<4\) (iv) \(\frac{\pi}{2}<\int_{0}^{\pi / 2} \frac{\mathrm{d} \theta}{\sqrt{1-\mathrm{k}^{2} \sin ^{2} \theta}}<\frac{\pi}{2 \sqrt{1-\mathrm{k}^{2}}}\left(0<\mathrm{k}^{2}<1\right)\).
Evaluate the following integrals : (i) \(\int_{0}^{3 \pi / 2} \cos ^{4} 3 x \cdot \sin ^{2} 6 x d x\) (ii) \(\int_{0}^{1} x^{6} \sin ^{-1} x d x\) (iii) \(\int_{0}^{1} x^{3}(1-x)^{9 / 2} d x\) (iv) \(\int_{0}^{1} x^{4}(1-x)^{1 / 4} d x\)
A function \(\mathrm{f}\), continuous on the positive real axis, has the property that \(\int_{1}^{x y} f(t) d t=y \int_{1}^{x} f(t) d t+x \int_{1}^{y} f(t) d t\) for all \(x>0\) and all \(y>0 .\) If \(f(1)=3\), compute \(\mathrm{f}(\mathrm{x})\) for each \(\mathrm{x}>0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.