Chapter 2: Problem 2
If \(\mathrm{f}(\mathrm{x})=\int_{0}^{\mathrm{x}^{3}} \sqrt{\cos \mathrm{t}} \mathrm{dt}\), find \(\mathrm{f}(\mathrm{x})\)
Chapter 2: Problem 2
If \(\mathrm{f}(\mathrm{x})=\int_{0}^{\mathrm{x}^{3}} \sqrt{\cos \mathrm{t}} \mathrm{dt}\), find \(\mathrm{f}(\mathrm{x})\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA function \(\mathrm{f}\) is defined for all real \(\mathrm{x}\) by the formula \(\mathrm{f}(\mathrm{x})=3+\int_{0}^{\mathrm{x}} \frac{1+\sin \mathrm{t}}{2+\mathrm{t}^{2}} \mathrm{dt}\). Without attempting to evaluate this integral, find a quadratic polynomial \(\mathrm{p}(\mathrm{x})=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}\) such that \(\mathrm{p}(0)=\mathrm{f}(0), \mathrm{p}^{\prime}(0)=\mathrm{f}^{\prime}(0)\), and \(\mathrm{p}^{\prime \prime}(0)=\) f' \((0)\).
Show that \(\int_{0}^{\infty} \sin \theta \mathrm{d} \theta\) and \(\int_{0}^{\infty} \cos \theta \mathrm{d} \theta\) are indeterminate.
(a) Show that \(1 \leq \sqrt{1+x^{3}} \leq 1+x^{3}\) for \(x \geq 0\)(b) Show that \(1 \leq \int_{0}^{1} \sqrt{1+x^{3}} d x \leq 1.25\).
Given that f satisfies \(|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})| \leq|\mathrm{u}-\mathrm{v}|\) for \(\mathrm{u}\) and \(v\) in \([a, b]\) then prove that (i) \(\mathrm{f}\) is continuous in \([\mathrm{a}, \mathrm{b}]\) and (ii) \(\left|\int_{a}^{b} f(x) d x-(b-a) f(a)\right| \leq \frac{(b-a)^{2}}{2}\).
Assume \(\int\) is continuous on \([a, b]\). Assume also that \(\int_{a}^{b} f(x) g(x) d x=0\) for every function \(g\) that is continuous on \([\mathrm{a}, \mathrm{b}]\). Prove that \(\mathrm{f}(\mathrm{x})=0\) for all xin [a. b]
What do you think about this solution?
We value your feedback to improve our textbook solutions.