Chapter 2: Problem 2
For the function \(\mathrm{f}(\mathrm{x})=1+3^{\mathrm{x}}\) /n 3 find the antiderivative \(\mathrm{F}(\mathrm{x})\), which assumes the value 7 for \(x=2\). At what values of \(x\) does the curve \(F(x)\) cut the \(x\)-axis?
Chapter 2: Problem 2
For the function \(\mathrm{f}(\mathrm{x})=1+3^{\mathrm{x}}\) /n 3 find the antiderivative \(\mathrm{F}(\mathrm{x})\), which assumes the value 7 for \(x=2\). At what values of \(x\) does the curve \(F(x)\) cut the \(x\)-axis?
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : (i) \(\int_{0}^{3 \pi / 2} \cos ^{4} 3 x \cdot \sin ^{2} 6 x d x\) (ii) \(\int_{0}^{1} x^{6} \sin ^{-1} x d x\) (iii) \(\int_{0}^{1} x^{3}(1-x)^{9 / 2} d x\) (iv) \(\int_{0}^{1} x^{4}(1-x)^{1 / 4} d x\)
Evaluate the following integrals : (i) \(\int_{0}^{\pi / 2} \sin ^{5} x d x\) (ii) \(\int_{0}^{\frac{1}{2} \pi} \cos ^{6} x d x\)
If each case, give an example of a continuous function \(\mathrm{f}\) satisfying the conditions stated for all real \(\mathrm{x}\), or else explain why there is no such function : (a) \(\int_{0}^{x} \mathrm{f}(\mathrm{t}) \mathrm{dt}=\mathrm{e}^{x}\) (b) \(\int_{0}^{x^{2}} f(t) d t=1-2^{x^{2}}\). (c) \(\int_{0}^{x} f(t) d t f^{2}(x)-1\).
Prove that (a) \(\pi=\lim _{n \rightarrow \infty} \frac{4}{n^{2}}\left(\sqrt{n^{2}-1}+\sqrt{n^{2}-2^{2}}+\ldots+\sqrt{n^{2}-n^{2}}\right)\). (b) \(\int_{1}^{3}\left(x^{2}+1\right) d x=\lim _{n \rightarrow \infty} \frac{4}{n^{3}} \sum_{i=1}^{n}\left(n^{2}+2 i n+2 i^{2}\right)\).
Show that the inequalities \(0.692 \leq \int_{0}^{1} x^{x} d x \leq 1\) are valid.
What do you think about this solution?
We value your feedback to improve our textbook solutions.