Chapter 2: Problem 2
Evaluate \(\int_{-2}^{0} \sqrt{4-\mathrm{x}^{2}} \mathrm{dx}\)
Chapter 2: Problem 2
Evaluate \(\int_{-2}^{0} \sqrt{4-\mathrm{x}^{2}} \mathrm{dx}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate \(\int_{0}^{1} \frac{\tan ^{-1} \mathrm{ax}}{\mathrm{x} \sqrt{1-\mathrm{x}^{2}}} \mathrm{dx}\)
Prove that (i) \(0<\int_{0}^{\pi / 2} \sin ^{n+1} x d x<\int_{0}^{\pi / 2} \sin ^{2} x d x, n>1\) (ii) \(1<\int_{0}^{\pi / 2} \sqrt{\sin x} \mathrm{~d} \mathrm{x}<\sqrt{\frac{\pi}{2}}\) (iii) \(\mathrm{e}^{-\frac{1}{4}}<\int_{0}^{1} \mathrm{e}^{\mathrm{x}^{2}-\mathrm{x}} \mathrm{dx}<1\) (iv) \(-\frac{1}{2} \leq \int_{0}^{1} \frac{x^{3} \cos x}{2+x^{2}} d x<\frac{1}{2}\).
If \(\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{3 / 2}}\), prove that, \(\ell \mathrm{n} 2<\mathrm{I}<\frac{\pi}{4}\).
Find \(\int_{0}^{2} f(x) d x\), where
\(f(x)=\left\\{\begin{array}{c}\frac{1}{\sqrt[4]{x^{3}}} \quad \text { for } 0
\leq x \leq 1 \\ \frac{1}{\sqrt[4]{(x-1)^{3}}}\end{array}\right.\) for \(1
A function \(\mathrm{f}\) is defined for all real \(\mathrm{x}\) by the formula \(\mathrm{f}(\mathrm{x})=3+\int_{0}^{\mathrm{x}} \frac{1+\sin \mathrm{t}}{2+\mathrm{t}^{2}} \mathrm{dt}\). Without attempting to evaluate this integral, find a quadratic polynomial \(\mathrm{p}(\mathrm{x})=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}\) such that \(\mathrm{p}(0)=\mathrm{f}(0), \mathrm{p}^{\prime}(0)=\mathrm{f}^{\prime}(0)\), and \(\mathrm{p}^{\prime \prime}(0)=\) f' \((0)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.