Chapter 2: Problem 19
Derive a formula for \(\mathrm{I}_{\mathrm{n}}=\int_{0}^{1} \frac{(1-\mathrm{x})^{\mathrm{n}}}{\sqrt{\mathrm{x}}} \mathrm{d} \mathrm{x}\), (n is a positive integer).
Chapter 2: Problem 19
Derive a formula for \(\mathrm{I}_{\mathrm{n}}=\int_{0}^{1} \frac{(1-\mathrm{x})^{\mathrm{n}}}{\sqrt{\mathrm{x}}} \mathrm{d} \mathrm{x}\), (n is a positive integer).
All the tools & learning materials you need for study success - in one app.
Get started for freeUsing Schwartz-Bunyakovsky inequality with \(\mathrm{f}^{2}(\mathrm{x})=\frac{1}{1+\mathrm{x}^{2}}, \mathrm{~g}^{2}(\mathrm{x})=1+\mathrm{x}^{2}\), show that \(\int_{0}^{1} \frac{1}{1+x^{2}} d x>\frac{3}{4}\).
Prove that (i) \(\frac{99 \pi}{400}<\int_{1}^{100} \frac{\tan ^{-1} x}{x^{2}} d x<\frac{99 \pi}{200}\) (ii) \(\frac{609(\ln 2)^{2}}{4}<\int_{2}^{5} x^{3}(\ln x)^{2} d x<\frac{609(\ln 5)^{2}}{4}\) (iii) \(\left(1-\mathrm{e}^{-1}\right) \ln 10<\int_{1}^{10} \frac{1-\mathrm{e}^{-x}}{\mathrm{x}} \mathrm{dx}<\ln 10\) (iv) \(\frac{1}{10 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{9}}{\sqrt{1+x}} d x \leq \frac{1}{10}\).
Let \(\mathrm{f}(\mathrm{x})=\mathrm{A} x^{2}+\mathrm{Bx}+\mathrm{C}\). Show that \(\int_{-\mathrm{h}}^{\mathrm{h}} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\frac{\mathrm{h}}{3}[\mathrm{f}(-\mathrm{h})+4 \mathrm{f}(0)+\mathrm{f}(\mathrm{h})]\)
Prove that (a) \(\pi=\lim _{n \rightarrow \infty} \frac{4}{n^{2}}\left(\sqrt{n^{2}-1}+\sqrt{n^{2}-2^{2}}+\ldots+\sqrt{n^{2}-n^{2}}\right)\). (b) \(\int_{1}^{3}\left(x^{2}+1\right) d x=\lim _{n \rightarrow \infty} \frac{4}{n^{3}} \sum_{i=1}^{n}\left(n^{2}+2 i n+2 i^{2}\right)\).
It is known that \(\int_{a}^{b} f(x) d x>\int_{a}^{b} g(x) d x\). Does it follow that \(\mathrm{f}(\mathrm{x}) \geq \mathrm{g}(\mathrm{x}) \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}] ?\) Give examples.
What do you think about this solution?
We value your feedback to improve our textbook solutions.