Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If \(\mathrm{f}(\mathrm{x})=\left|2^{\mathrm{x}}-1\right|+|\mathrm{x}-1|\) then evaluate \(\int_{-2}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}\)

Short Answer

Expert verified
The integral of f(x) = |2^x - 1| + |x - 1| on the interval [-2, 2] is 2 + 12/ln(2).

Step by step solution

01

Identify critical points

To find the critical points, we will solve for the values of \(x\) where either \(2^{\mathrm{x}}-1=0\) or \(\mathrm{x}-1=0\). For the first term, \(2^{\mathrm{x}}-1=0\), we get \(2^{\mathrm{x}}=1\). This happens only when \(x=0\). For the second term, \(\mathrm{x}-1=0\), we get \(x=1\). So, there are two critical points within the interval \([-2, 2]\): \(x=0\) and \(x=1\). These points divide the interval \([-2, 2]\) into three subintervals: \([-2, 0]\), \([0, 1]\), and \([1, 2]\).
02

Rewrite f(x) without absolute values on each subinterval

For \(x \in [-2, 0]\), both \(2^{\mathrm{x}}-1\) and \(\mathrm{x}-1\) are negative, so we can rewrite \(\mathrm{f}(\mathrm{x})\) as \(-\left(2^{\mathrm{x}}-1\right)-(\mathrm{x}-1)\). For \(x \in [0, 1]\), \(|\mathrm{x}-1|\) still needs to be positive, so we'll rewrite the function on this interval as \(-\left(2^{\mathrm{x}}-1\right)+(\mathrm{x}-1)\). For \(x \in [1, 2]\), both \(2^{\mathrm{x}}-1\) and \(\mathrm{x}-1\) are positive, so the function remains as \(\left(2^{\mathrm{x}}-1\right)+(\mathrm{x}-1)\).
03

Integrate f(x) on each subinterval

Now we will integrate \(\mathrm{f}(\mathrm{x})\) on each subinterval as follows: For \(x \in [-2, 0]\): \(\int_{-2}^{0}[\mathrm{-}(2^{\mathrm{x}}-1)-(\mathrm{x}-1)]\mathrm{d}\mathrm{x} = -\int_{-2}^{0}(2^{\mathrm{x}})\mathrm{d}\mathrm{x} +\int_{-2}^{0}\mathrm{x}\mathrm{d}\mathrm{x} -[-2,0]\). For \(x \in [0, 1]\): \(\int_{0}^{1}[\mathrm{-}(2^{\mathrm{x}}-1)+(\mathrm{x}-1)]\mathrm{d}\mathrm{x} = -\int_{0}^{1}(2^{\mathrm{x}})\mathrm{d}\mathrm{x} +\int_{0}^{1}\mathrm{x}\mathrm{d}\mathrm{x} -[0,1]\). For \(x \in [1, 2]\): \(\int_{1}^{2}[\mathrm{(2^{\mathrm{x}}-1)+(\mathrm{x}-1)}]\mathrm{d}\mathrm{x} = \int_{1}^{2}(2^{\mathrm{x}})\mathrm{d}\mathrm{x} +\int_{1}^{2}\mathrm{x}\mathrm{d}\mathrm{x} -[1,2]\).
04

Calculate the definite integrals on each subinterval and sum them up

Now, we will compute the resulting integrals in each segment: For \(x \in [-2, 0]\): \(-\int_{-2}^{0}(2^{\mathrm{x}})\mathrm{d}\mathrm{x} +\int_{-2}^{0}\mathrm{x}\mathrm{d}\mathrm{x} -[-2,0] = -[\frac{2^x}{\ln(2)}\Big|_{-2}^{0}] + [\frac{x^2}{2}\Big|_{-2}^{0}] - (0 - (-2))\) $= -\frac{1 - 2^{-2}}{\ln(2)} + \frac{4}{2} - 2 = \frac{11}{2\ln(2)} For \(x \in [0, 1]\): \(-\int_{0}^{1}(2^{\mathrm{x}})\mathrm{d}\mathrm{x} +\int_{0}^{1}\mathrm{x}\mathrm{d}\mathrm{x} -[0,1] = -[\frac{2^x}{\ln(2)}\Big|_{0}^{1}] + [\frac{x^2}{2}\Big|_{0}^{1}] - (1 - 0)\) \(= -\frac{2 - 1}{\ln(2)} + \frac{1}{2} - 1 = \frac{1}{2} - \frac{1}{\ln(2)}\) For \(x \in [1, 2]\): \(\int_{1}^{2}(2^{\mathrm{x}})\mathrm{d}\mathrm{x} +\int_{1}^{2}\mathrm{x}\mathrm{d}\mathrm{x} -[1,2] = [\frac{2^x}{\ln(2)}\Big|_{1}^{2}] + [\frac{x^2}{2}\Big|_{1}^{2}] - (2 - 1)\) \(= \frac{4 - 2}{\ln(2)} + \frac{3}{2} - 1 = \frac{3}{2} + \frac{2}{\ln(2)}\) Now, sum up the results of the three subintervals: \(\frac{11}{2\ln(2)}+\left(\frac{1}{2} - \frac{1}{\ln(2)}\right)+\left(\frac{3}{2} + \frac{2}{\ln(2)}\right) = 2+\frac{12}{\ln(2)}\) Thus, the definite integral of \(\mathrm{f}(\mathrm{x})\) over the interval \([-2, 2]\) is: \(\int_{-2}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}=2+\frac{12}{\ln(2)}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(\mathrm{P}_{\mathrm{n}}\) denote the polynomial of degree \(\mathrm{n}\) given by \(\mathrm{P}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}+\frac{\mathrm{x}^{2}}{2}+\frac{\mathrm{x}^{3}}{3}+\ldots .+\frac{\mathrm{x}^{\mathrm{n}}}{\mathrm{n}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\mathrm{x}^{\mathrm{k}}}{\mathrm{k}}\). Then, for every \(x<1\) and every \(n \geq 1\), prove that \(-\ln (1-x)=P_{n}(x)+\int_{0}^{x} \frac{u^{n}}{1-u} d u\)

Evaluate \(\int_{0}^{\pi / 2} \ln (1+\cos \theta \cos x) \frac{d x}{\cos x}\)

Prove that (i) \(0<\int_{0}^{\pi / 2} \sin ^{n+1} x d x<\int_{0}^{\pi / 2} \sin ^{2} x d x, n>1\) (ii) \(1<\int_{0}^{\pi / 2} \sqrt{\sin x} \mathrm{~d} \mathrm{x}<\sqrt{\frac{\pi}{2}}\) (iii) \(\mathrm{e}^{-\frac{1}{4}}<\int_{0}^{1} \mathrm{e}^{\mathrm{x}^{2}-\mathrm{x}} \mathrm{dx}<1\) (iv) \(-\frac{1}{2} \leq \int_{0}^{1} \frac{x^{3} \cos x}{2+x^{2}} d x<\frac{1}{2}\).

\(\int_{-\infty}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx}\) may not equal \(\lim _{\mathrm{b} \rightarrow \infty} \int_{-\mathrm{b}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{d} x\) Show that \(\int_{0}^{\infty} \frac{2 \mathrm{xdx}}{\mathrm{x}^{2}+1}\) diverges and hence that \(\int_{-\infty}^{\infty} \frac{2 x d x}{x^{2}+1}\) diverges. Then show that \(\lim _{b \rightarrow \infty} \int_{-b}^{b} \frac{2 x d x}{x^{2}+1}=0\)

Given that \(\int_{0}^{\pi / 2} \ln \tan \theta \mathrm{d} \theta, \int_{0}^{\pi / 2} \sin ^{2} \theta \ln \tan \theta \mathrm{d} \theta\) are convergent improper integrals, prove that their values are \(0, \frac{\pi}{4}\) respectively.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free