Chapter 2: Problem 18
If \(\mathrm{f}(\mathrm{x})=\left|2^{\mathrm{x}}-1\right|+|\mathrm{x}-1|\) then evaluate \(\int_{-2}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}\)
Chapter 2: Problem 18
If \(\mathrm{f}(\mathrm{x})=\left|2^{\mathrm{x}}-1\right|+|\mathrm{x}-1|\) then evaluate \(\int_{-2}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{P}_{\mathrm{n}}\) denote the polynomial of degree \(\mathrm{n}\) given by \(\mathrm{P}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}+\frac{\mathrm{x}^{2}}{2}+\frac{\mathrm{x}^{3}}{3}+\ldots .+\frac{\mathrm{x}^{\mathrm{n}}}{\mathrm{n}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\mathrm{x}^{\mathrm{k}}}{\mathrm{k}}\). Then, for every \(x<1\) and every \(n \geq 1\), prove that \(-\ln (1-x)=P_{n}(x)+\int_{0}^{x} \frac{u^{n}}{1-u} d u\)
Evaluate \(\int_{0}^{\pi / 2} \ln (1+\cos \theta \cos x) \frac{d x}{\cos x}\)
Prove that (i) \(0<\int_{0}^{\pi / 2} \sin ^{n+1} x d x<\int_{0}^{\pi / 2} \sin ^{2} x d x, n>1\) (ii) \(1<\int_{0}^{\pi / 2} \sqrt{\sin x} \mathrm{~d} \mathrm{x}<\sqrt{\frac{\pi}{2}}\) (iii) \(\mathrm{e}^{-\frac{1}{4}}<\int_{0}^{1} \mathrm{e}^{\mathrm{x}^{2}-\mathrm{x}} \mathrm{dx}<1\) (iv) \(-\frac{1}{2} \leq \int_{0}^{1} \frac{x^{3} \cos x}{2+x^{2}} d x<\frac{1}{2}\).
\(\int_{-\infty}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx}\) may not equal \(\lim _{\mathrm{b} \rightarrow \infty} \int_{-\mathrm{b}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{d} x\) Show that \(\int_{0}^{\infty} \frac{2 \mathrm{xdx}}{\mathrm{x}^{2}+1}\) diverges and hence that \(\int_{-\infty}^{\infty} \frac{2 x d x}{x^{2}+1}\) diverges. Then show that \(\lim _{b \rightarrow \infty} \int_{-b}^{b} \frac{2 x d x}{x^{2}+1}=0\)
Given that \(\int_{0}^{\pi / 2} \ln \tan \theta \mathrm{d} \theta, \int_{0}^{\pi / 2} \sin ^{2} \theta \ln \tan \theta \mathrm{d} \theta\) are convergent improper integrals, prove that their values are \(0, \frac{\pi}{4}\) respectively.
What do you think about this solution?
We value your feedback to improve our textbook solutions.