Chapter 2: Problem 18
Determine whether the value of the integral is positive or negative. (i) \(\int_{-3}^{-1} \frac{x^{4}}{\sqrt{3-x}} d x\) (ii) \(\int_{-2}^{4} \frac{x^{3}}{|x|+1} d x\)
Chapter 2: Problem 18
Determine whether the value of the integral is positive or negative. (i) \(\int_{-3}^{-1} \frac{x^{4}}{\sqrt{3-x}} d x\) (ii) \(\int_{-2}^{4} \frac{x^{3}}{|x|+1} d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the inequalities: (i) \(\int_{1}^{3} \sqrt{x^{4}+1} d x \geq \frac{26}{3}\)(iii) \(\frac{1}{17} \leq \int_{1}^{2} \frac{1}{1+x^{4}} \mathrm{dx} \leq \frac{7}{24}\).
Evaluate \(\int_{0}^{a} \sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}} \cos ^{-1} \frac{\mathrm{x}}{\mathrm{a}} \mathrm{dx}\).
One of the numbers \(\pi, \pi / 2,35 \pi / 128,1-\pi\) is the correct value of the integral \(\int_{0}^{\pi} \sin ^{8} x d x\). Use the graph of \(\mathrm{y}=\sin ^{8} \mathrm{x}\) and a logical process of elimination to find the correct value.
Show that \(\int_{0}^{\infty} x^{-\mathrm{rx}} \sin a x \mathrm{~d} x\) equals \(a /\left(a^{2}+r^{2}\right)\), where \(r>0\) and a are constant.
Prove that (a) \(\pi=\lim _{n \rightarrow \infty} \frac{4}{n^{2}}\left(\sqrt{n^{2}-1}+\sqrt{n^{2}-2^{2}}+\ldots+\sqrt{n^{2}-n^{2}}\right)\). (b) \(\int_{1}^{3}\left(x^{2}+1\right) d x=\lim _{n \rightarrow \infty} \frac{4}{n^{3}} \sum_{i=1}^{n}\left(n^{2}+2 i n+2 i^{2}\right)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.