Chapter 2: Problem 18
\begin{aligned} &\text { Find the value of 'a' such that }\\\ &\int_{0}^{a} \frac{d x}{e^{x}+4 e^{-x}+5}=\ln \sqrt[3]{2} . \end{aligned}
Chapter 2: Problem 18
\begin{aligned} &\text { Find the value of 'a' such that }\\\ &\int_{0}^{a} \frac{d x}{e^{x}+4 e^{-x}+5}=\ln \sqrt[3]{2} . \end{aligned}
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\int_{0}^{2} f(x) d x\), where
\(f(x)=\left\\{\begin{array}{c}\frac{1}{\sqrt[4]{x^{3}}} \quad \text { for } 0
\leq x \leq 1 \\ \frac{1}{\sqrt[4]{(x-1)^{3}}}\end{array}\right.\) for \(1
Which of following integrals are improper ? Why? (a) \(\int_{1}^{2} \frac{1}{2 x-1} \mathrm{dx}\) (b) \(\int_{0}^{1} \frac{1}{2 x-1} d x\) (c) \(\int_{-\infty}^{\infty} \frac{\sin x}{1+x^{2}} d x\) (d) \(\int_{1}^{2} \ln (x-1) d x\)
Compute (a) \(\lim _{t \rightarrow 0+} \int_{t}^{1} \frac{1}{x} \mathrm{dx}\) (b) \(\lim _{t \rightarrow 1-} \int_{0}^{t} \tan \frac{\pi}{2} x d x\). How does the result give insight into the fact that neither integrand is integrable over the interval \([0,1] ?\)
A honeybee population starts with 100 bees and increases at a rate of \(\mathrm{n}^{\prime}(\mathrm{t})\) bees per week. What does \(100+\int_{0}^{15} \mathrm{n}^{\prime}(\mathrm{t}) \mathrm{dt}\) represent?
If \(\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{3 / 2}}\), prove that, \(\ell \mathrm{n} 2<\mathrm{I}<\frac{\pi}{4}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.