Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove that (i) \(\frac{99 \pi}{400}<\int_{1}^{100} \frac{\tan ^{-1} x}{x^{2}} d x<\frac{99 \pi}{200}\) (ii) \(\frac{609(\ln 2)^{2}}{4}<\int_{2}^{5} x^{3}(\ln x)^{2} d x<\frac{609(\ln 5)^{2}}{4}\) (iii) \(\left(1-\mathrm{e}^{-1}\right) \ln 10<\int_{1}^{10} \frac{1-\mathrm{e}^{-x}}{\mathrm{x}} \mathrm{dx}<\ln 10\) (iv) \(\frac{1}{10 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{9}}{\sqrt{1+x}} d x \leq \frac{1}{10}\).

Short Answer

Expert verified
Question: Prove the following inequalitiesbased on the provided step-by-step solutions: (i) \(\frac{99 \pi}{400}<\int_{1}^{100} \frac{\tan ^{-1} x}{x^{2}} d x<\frac{99\pi}{200}\) (ii) \(\frac{609(\ln 2)^{2}}{4}<\int_{2}^{5} x^{3}(\ln x)^{2} d x<\frac{609(\ln 5)^{2}}{4}\) (iii) \(\left(1-\mathrm{e}^{-1}\right) \ln 10<\int_{1}^{10} \frac{1-\mathrm{e}^{-x}}{\mathrm{x}} \mathrm{dx}<\ln 10\) (iv) \(\frac{1}{10 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{9}}{\sqrt{1+x}} d x \leq \frac{1}{10}\)

Step by step solution

01

Create a comparison

Observe that for \(1 \le x \le 100\), we have \(\frac{\pi}{4x^2} \le \frac{\tan^{-1} x}{x^2} \le \frac{\pi x}{4x^2} = \frac{\pi}{4x}\). The inequality \(\frac{\pi}{4x^2} \le \frac{\tan^{-1} x}{x^2}\) holds because \(\tan^{-1} x \le \frac{\pi}{4}\), and the inequality \(\frac{\tan^{-1} x}{x^2} \le \frac{\pi}{4x}\) holds because \(\tan^{-1} x \le x\).
02

Integrate the comparison functions

Now, we integrate the comparison functions over the interval \([1, 100]\): \(\int_{1}^{100} \frac{\pi}{4x^2} dx = \pi \int_{1}^{100} \frac{1}{4x^2} dx = \left[-\frac{\pi}{4x}\right]_{1}^{100} = -\frac{\pi}{4}\left(\frac{1}{100} - 1\right) = \frac{99\pi}{400}\). \(\int_{1}^{100} \frac{\pi}{4x} dx = \pi \int_{1}^{100} \frac{1}{4x} dx = \frac{\pi}{4}\left[\ln x\right]_{1}^{100} = \frac{\pi}{4}\ln 100 = \frac{99\pi}{200}\).
03

Apply the comparison property of integrals

Using the comparison property of integrals, we get: \(\frac{99 \pi}{400} < \int_{1}^{100} \frac{\tan ^{-1} x}{x^{2}} d x < \frac{99\pi}{200}\). (ii) Prove \(\frac{609(\ln 2)^{2}}{4}<\int_{2}^{5} x^{3}(\ln x)^{2} d x<\frac{609(\ln 5)^{2}}{4}\)
04

Create a comparison

Observe that for \(2 \le x \le 5\), we have \(x^3(\ln 2)^2 \le x^3(\ln x)^2 \le x^3(\ln 5)^2\).
05

Integrate the comparison functions

Now, we integrate the comparison functions over the interval \([2, 5]\): \(\int_{2}^{5} x^3(\ln 2)^2 dx = (\ln 2)^2 \int_{2}^{5} x^3 dx = \frac{609(\ln 2)^2}{4}\). \(\int_{2}^{5} x^3(\ln 5)^2 dx = (\ln 5)^2 \int_{2}^{5} x^3 dx = \frac{609(\ln 5)^2}{4}\).
06

Apply the comparison property of integrals

Using the comparison property of integrals, we get: \(\frac{609(\ln 2)^{2}}{4}<\int_{2}^{5} x^{3}(\ln x)^{2} d x<\frac{609(\ln 5)^{2}}{4}\). (iii) Prove \(\left(1-\mathrm{e}^{-1}\right) \ln 10<\int_{1}^{10} \frac{1-\mathrm{e}^{-x}}{\mathrm{x}} \mathrm{dx}<\ln 10\)
07

Create a comparison

Observe that for \(1 \le x \le 10\), we have \(\frac{1-\mathrm{e}^{-1}}{x} \le \frac{1-\mathrm{e}^{-x}}{x} \le \frac{1}{x}\).
08

Integrate the comparison functions

Now, we integrate the comparison functions over the interval \([1, 10]\): \(\int_{1}^{10} \frac{1-\mathrm{e}^{-1}}{x} dx = (1-\mathrm{e}^{-1})\left[\ln x\right]_{1}^{10} = (1-\mathrm{e}^{-1})\ln 10\). \(\int_{1}^{10} \frac{1}{x} dx = \left[\ln x\right]_{1}^{10} = \ln 10\).
09

Apply the comparison property of integrals

Using the comparison property of integrals, we get: \(\left(1-\mathrm{e}^{-1}\right) \ln 10<\int_{1}^{10} \frac{1-\mathrm{e}^{-x}}{\mathrm{x}} \mathrm{dx}<\ln 10\). (iv) Prove \(\frac{1}{10 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{9}}{\sqrt{1+x}} d x \leq \frac{1}{10}\)
10

Create a comparison

Observe that for \(0 \le x \le 1\), we have \(\frac{1}{10\sqrt{2}} \le \frac{x^9}{\sqrt{1+x}} \le \frac{1}{10}\).
11

Integrate the comparison functions

Now, we integrate the comparison functions over the interval \([0, 1]\): \(\int_{0}^{1} \frac{1}{10 \sqrt{2}} dx = \frac{1}{10 \sqrt{2}}\left[x\right]_{0}^{1} = \frac{1}{10\sqrt{2}}\). \(\int_{0}^{1} \frac{1}{10} dx = \frac{1}{10}\left[x\right]_{0}^{1} = \frac{1}{10}\).
12

Apply the comparison property of integrals

Using the comparison property of integrals, we get: \(\frac{1}{10 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{9}}{\sqrt{1+x}} d x \leq \frac{1}{10}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free