Chapter 2: Problem 16
Prove that the function \(f(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor\) for \(x \neq 0\), \(f(0)=0\), is integrable on the closed interval \([0,1]\).
Chapter 2: Problem 16
Prove that the function \(f(x)=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor\) for \(x \neq 0\), \(f(0)=0\), is integrable on the closed interval \([0,1]\).
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that (i) \(\int_{1}^{2} \frac{d x}{(x+1) \sqrt{x^{2}-1}}=\frac{1}{\sqrt{3}}\). (ii) \(\int_{0}^{1} \frac{\mathrm{dx}}{(1+x)(2+x) \sqrt{x(1-x)}}=\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{6}}\right)\).
If \(\alpha\) and \(\phi\) are positive acute angles then prove that \(\phi<\int_{0}^{p} \frac{\mathrm{dx}}{\sqrt{\left(1-\sin ^{2} \alpha \sin ^{2} \mathrm{x}\right)}}<\frac{\varphi}{\sqrt{\left(1-\sin ^{2} \alpha \sin ^{2} \varphi\right)}} .\) If \(\alpha=\phi=1 / 6 \pi\), then prove that the integral lies between \(0.523\) and \(0.541\).
A honeybee population starts with 100 bees and increases at a rate of \(\mathrm{n}^{\prime}(\mathrm{t})\) bees per week. What does \(100+\int_{0}^{15} \mathrm{n}^{\prime}(\mathrm{t}) \mathrm{dt}\) represent?
Estimate \(\int_{0}^{3} \mathrm{f}(\mathrm{x}) \mathrm{d} x\) if \(\mathrm{it}\) is known that \(f(0)=10, f(0.5)=13, f(1)=14, f(1.5)=16, f(2)=18\) \(\mathrm{f}(2.5)=10, \mathrm{f}(3)=6 \mathrm{by}\) (a) the trapezoidal method. (b) Simpson's method.
Prove that \(\int_{0}^{2 \lambda} \frac{\sin x}{x} d x=\int_{0}^{i} \frac{\sin 2 y}{y} d y=\frac{\sin ^{2} \lambda}{\lambda}+\int_{0}^{i} \frac{\sin ^{2} x}{x^{2}} d x .\) Deduce that \(\int_{0}^{\infty} \frac{\sin x}{x} d x=\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x\) (It may be assumed that the integrals are convergent)
What do you think about this solution?
We value your feedback to improve our textbook solutions.