Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the following definite integrals by finding antiderivatives : (i) \(\int_{0}^{1 / 2} \frac{d x}{\left(1-2 x^{2}\right) \sqrt{1-x^{2}}}\) (ii) \(\int_{a}^{\beta} \frac{d x}{\sqrt{(x-\alpha)(\beta-x)}}(b>a)\) (iii) \(\int_{0}^{\pi / 2} \frac{d x}{4+5 \sin x}\) (iv) \(\int_{2}^{3} \frac{\sqrt{(x-2)^{2}}}{1+\sqrt{(x-2)^{3}}} d x\)

Short Answer

Expert verified
Question: Evaluate the following integrals: (i) \(\int_{0}^{1 / 2} \frac{d x}{\left(1-2 x^{2}\right) \sqrt{1-x^{2}}}\) (ii) \(\int_{a}^{\beta} \frac{d x}{\sqrt{(x-\alpha)(\beta-x)}}\) (iii) \(\int_{0}^{\pi / 2} \frac{d x}{4+5 \sin x}\) (iv) \(\int_{2}^{3} \frac{\sqrt{(x-2)^{2}}}{1+\sqrt{(x-2)^{3}}} dx\) Answer: (i) \(\int_{0}^{1 / 2} \frac{d x}{\left(1-2 x^{2}\right) \sqrt{1-x^{2}}} = 1\) (ii) \(\int_{a}^{\beta} \frac{d x}{\sqrt{(x-\alpha)(\beta-x)}}= 2\left(\frac{\pi}{2}-\sin^{-1}{\sqrt\frac{a-\alpha}{\beta-\alpha}}\right)\) (iii) \(\int_{0}^{\pi / 2} \frac{d x}{4+5 \sin x}= \frac{\pi}{10} - \frac{\ln 4}{5}\) (iv) \(\int_{2}^{3} \frac{\sqrt{(x-2)^{2}}}{1+\sqrt{(x-2)^{3}}} dx = \frac{3}{2}\)

Step by step solution

01

(i) Integration of the First Function

The first integral is \(\int_{0}^{1 / 2} \frac{d x}{\left(1-2 x^{2}\right) \sqrt{1-x^{2}}}\). To solve this integral, we first notice that we can perform a substitution. Let \(x = \frac{1}{\sqrt{2}}\sin{u}\). Then, \(dx = \frac{1}{\sqrt{2}}\cos{u} du\). Now, we can substitute this into our integral: \(\int_{0}^{1 / 2} \frac{d x}{\left(1-2 x^{2}\right) \sqrt{1-x^{2}}} = \int_{0}^{\pi/4} \frac{\frac{1}{\sqrt{2}}\cos{u} du}{\left(1 - 2\left(\frac{1}{\sqrt{2}}\sin{u}\right)^{2}\right) \sqrt{1-\left(\frac{1}{\sqrt{2}}\sin{u}\right)^{2}}}\). Solving this integral, we get: \(\int_{0}^{\pi/4} \frac{\cos{u} du}{\cos^{2}{u}} = \int_{0}^{\pi/4} \sec^{2}{u} du\). Now, we know that the antiderivative of \(\sec^{2}{u}\) is \(\tan{u}\). Therefore, we can now evaluate the integral: \(\int_{0}^{1 / 2} \frac{d x}{\left(1-2 x^{2}\right) \sqrt{1-x^{2}}} = \left[\tan{u}\right]_{0}^{\pi/4} = \left[\tan(\frac{\pi}{4}) - \tan(0)\right]\). Finally, we find the answer to be: (i) \(\int_{0}^{1 / 2} \frac{d x}{\left(1-2 x^{2}\right) \sqrt{1-x^{2}}} = 1 - 0 = 1\).
02

(ii) Integration of the Second Function

The second integral is \(\int_{a}^{\beta} \frac{d x}{\sqrt{(x-\alpha)(\beta-x)}}\). To solve this integral, we perform a substitution. Let's use the following substitution: \(x = \alpha + (\beta - \alpha) \sin^2{u},\) and \(dx = 2(\beta - \alpha) \sin{u}\cos{u} du\). Now, we can substitute this into our integral: \(\int_{a}^{\beta} \frac{d x}{\sqrt{(x-\alpha)(\beta-x)}} = \int_{\sin^{-1}{\sqrt\frac{a-\alpha}{\beta-\alpha}}}^{\pi/2} \frac{2(\beta - \alpha) \sin{u}\cos{u} du}{\sqrt{(\beta - \alpha) \sin^{2}{u}(\beta - \alpha)(1 - \sin^{2}{u})}}\). Solving this integral, we get: \(\int_{\sin^{-1}{\sqrt\frac{a-\alpha}{\beta-\alpha}}}^{\pi/2} 2 du\). Now we evaluate the integral and get the answer: (ii) \(\int_{a}^{\beta} \frac{d x}{\sqrt{(x-\alpha)(\beta-x)}}= 2\left[\cancel{u}\right]^{\pi/2}_{\sin^{-1}{\sqrt\frac{a-\alpha}{\beta-\alpha}}}=2\left(\frac{\pi}{2}-\sin^{-1}{\sqrt\frac{a-\alpha}{\beta-\alpha}}\right)\).
03

(iii) Integration of the Third Function

The third integral is \(\int_{0}^{\pi / 2} \frac{d x}{4+5 \sin x}\). To solve this integral, we use the substitution: \(u = \cot{x} \Rightarrow du = -\csc^2{x} dx\) Now, we can substitute this into our integral: \(\int_{0}^{\pi / 2} \frac{dx}{4+5 \sin x} = \int_{\infty}^{0} \frac{-du}{4+5 (1 - \csc^2{u})}\) Solving this integral, we get: \(\int_{\infty}^{0} -\frac{du}{4+5 - 5\csc^2{u}} = \int_{\infty}^{0} \frac{du}{(u^2+1)+4u}\) Now, we can use partial fractions to simplify the integral: \(\frac{5}{(u^2+1)(u+4)} = \frac{A}{u^2+1} + \frac{B}{u+4}\) Solving for A and B, we get \(A=\frac{1}{5}\) and \(B=-\frac{1}{5}\). So the integral becomes: \(\int_{\infty}^{0} \frac{1}{5}\frac{du}{u^2+1} - \frac{1}{5}\frac{du}{u+4}\) Now, we integrate and get the answer: (iii) \(\int_{0}^{\pi / 2} \frac{d x}{4+5 \sin x}= \left[\frac{1}{5}\tan^{-1}{u}\right]_{\infty}^{0}-\left[\frac{1}{5}\ln|u+4|\right]_{\infty}^{0}=\frac{\pi}{10} - \frac{\ln 4}{5}\).
04

(iv) Integration of the Fourth Function

The fourth integral is \(\int_{2}^{3} \frac{\sqrt{(x-2)^{2}}}{1+\sqrt{(x-2)^{3}}} dx\). Let's simplify the expression first: \(\int_{2}^{3} \frac{\sqrt{(x-2)^2}}{1+\sqrt{(x-2)^3}}dx = \int_{2}^{3} \frac{x-2}{1+\sqrt{(x-2)^3}}dx\) Now, we can use the substitution: \(u = (x-2)^3 \Rightarrow u^{1/3} = (x-2) \Rightarrow x = u^{1/3}+2\) and \(dx = \frac{1}{3}u^{-2/3} du\) Now, we substitute this into our integral: \(\int_{2}^{3} \frac{x-2}{1+\sqrt{(x-2)^3}}dx = \int_{0}^{1} \frac{1}{1+u^{1/3}}\frac{1}{3}u^{-2/3} du\) Simplifying the integral, we get: \(\int_{0}^{1} \frac{1}{3(1+u^{1/3})}\frac{1}{u^{2/3}} du = \frac{1}{3}\int_{0}^{1} \frac{du}{(1+u^{1/3})u^{2/3}}\) Now, we integrate and get the answer: (iv) \(\int_{2}^{3} \frac{\sqrt{(x-2)^{2}}}{1+\sqrt{(x-2)^{3}}} dx = \left[\frac{3}{2}u^{1/3}\right]_{0}^{1}=\frac{3}{2}(1^{1/3}-0) = \frac{3}{2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free