Chapter 2: Problem 15
Show that \(\int_{0}^{1}\left(1-x^{2}\right)^{n} d x=\frac{2^{2 n}(n !)^{2}}{(2 n+1) !}\).
Chapter 2: Problem 15
Show that \(\int_{0}^{1}\left(1-x^{2}\right)^{n} d x=\frac{2^{2 n}(n !)^{2}}{(2 n+1) !}\).
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Show that \(\int_{-1}^{1} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\mathrm{f}\left(\frac{-1}{\sqrt{3}}\right)+\mathrm{f}\left(\frac{1}{\sqrt{3}}\right)\) for \(f(x)=1, x, x^{2}\) and \(x^{3}\) (b) Let a and b be two numbers, \(-1 \leq \mathrm{a}<\mathrm{b} \leq 1\) such that \(\int_{-1}^{1} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\mathrm{f}(\mathrm{a})+\mathrm{f}(\mathrm{b})\) for \(\mathrm{f}(\mathrm{x})=1\), \(x, x^{2}\), and \(x^{3} .\) Show that \(a=-1 / \sqrt{3}\) and \(b=1 / \sqrt{3}\). (c) Show that the approximation \(\int_{-1}^{1} \mathrm{f}(\mathrm{x}) \mathrm{dx} \approx \mathrm{f}(-1 / \sqrt{3})+\mathrm{f}(1 / \sqrt{3})\) has no error when \(\mathrm{f}\) is a polynomial of degree atmost 3 .
Let \(\mathrm{f}\) be twice continuously differentiable in \([0,2 \pi]\) and concave up. Prove that \(\int_{0}^{2 \pi} f(x) \cos x d x \geq 0\)
Let p be a polynomial of degree atmost 4 such that \(\mathrm{p}(-1)=\mathrm{p}(1)=0\) and \(\mathrm{p}(0)=1\). If \(\mathrm{p}(\mathrm{x}) \leq 1\) for \(x \in[-1,1]\), find the largest value of \(\int^{1} p(x) d x\)
Prove that, as \(n \rightarrow \infty, \int_{0}^{1} \cos n x \tan ^{-1} x d x \rightarrow 0\).
Evaluate \(\int_{0}^{1} \frac{\tan ^{-1} \mathrm{ax}}{\mathrm{x} \sqrt{1-\mathrm{x}^{2}}} \mathrm{dx}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.