Chapter 2: Problem 15
Find the interval in which \(F(x)=\int_{-1}^{x}\left(e^{t}-1\right)(2-t) d t, \quad(x>-1)\) is increasing.
Chapter 2: Problem 15
Find the interval in which \(F(x)=\int_{-1}^{x}\left(e^{t}-1\right)(2-t) d t, \quad(x>-1)\) is increasing.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\int_{0}^{2} f(x) d x\), where
\(f(x)=\left\\{\begin{array}{c}\frac{1}{\sqrt[4]{x^{3}}} \quad \text { for } 0
\leq x \leq 1 \\ \frac{1}{\sqrt[4]{(x-1)^{3}}}\end{array}\right.\) for \(1
Evaluate the following integrals : (i) \(\int_{0}^{a} x\left(a^{2}-x^{2}\right)^{\frac{7}{2}}\) d (ii) \(\int_{0}^{2} x^{3 / 2} \sqrt{2-x} d x\) (iii) \(\int_{0}^{1} x^{3}\left(1-x^{2}\right)^{5 / 2} d x\) (iv) \(\int_{0}^{2 a} x^{5} \sqrt{\left(2 a x-x^{2}\right)} d x\)
If a is positive and \(\mathrm{I}=\int_{-1}^{1} \frac{\mathrm{dx}}{\sqrt{1-2 \mathrm{ax}+\mathrm{a}^{2}}}\) then show that \(\mathrm{I}=2 \mathrm{ifa}<1\) and \(\mathrm{I}=\frac{2}{\mathrm{a}}\) if \(\mathrm{a}>1\).
Evaluate the following integrals : (i) \(\int_{0}^{\pi / 2} \sin ^{5} x d x\) (ii) \(\int_{0}^{\frac{1}{2} \pi} \cos ^{6} x d x\)
Evaluate the following integrals : (i) \(\int_{0}^{1}\left(1-x^{2}\right)^{n} d x\) (ii) \(\int_{0}^{1} \frac{x^{2 n} d x}{\sqrt{1-x^{2}}}\) (iii) \(\int_{0}^{2 \mathrm{a}} \mathrm{x}^{9 / 2}(2 \mathrm{a}-\mathrm{x})^{-1 / 2} \mathrm{dx}\) (iv) \(\int_{0}^{\infty} \frac{x^{4} d x}{\left(a^{2}+x^{2}\right)^{2}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.