Chapter 2: Problem 15
\begin{aligned} &\text { Integrating by parts, prove that }\\\ &0<\int_{100 \pi}^{200 \pi} \frac{\cos \mathrm{x}}{\mathrm{x}} \mathrm{dx}<\frac{1}{100 \pi} \end{aligned}
Chapter 2: Problem 15
\begin{aligned} &\text { Integrating by parts, prove that }\\\ &0<\int_{100 \pi}^{200 \pi} \frac{\cos \mathrm{x}}{\mathrm{x}} \mathrm{dx}<\frac{1}{100 \pi} \end{aligned}
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that for each integer \(\mathrm{m}>1\), \(\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{m}<\ln m<1+\frac{1}{2}+\ldots+\frac{1}{m-1}\)
Let \(\mathrm{f}\) be twice continuously differentiable in \([0,2 \pi]\) and concave up. Prove that \(\int_{0}^{2 \pi} f(x) \cos x d x \geq 0\)
Here is an argument that \(\ln 3\) equals \(\infty-\infty\). Where does the argument go wrong ? Give reasons for your answer. \(\ln 3=\ln 1-\ln \frac{1}{3}\) \(=\lim _{b \rightarrow \infty} \ln \left(\frac{b-2}{b}\right)-\ln \frac{1}{3}\) \(=\lim _{b \rightarrow x}\left[\ln \frac{x-2}{x}\right]_{3}^{b}\) \(=\lim _{b \rightarrow \infty}[\ln (x-2)-\ln x]_{3}^{b}\) \(=\lim _{b \rightarrow \infty} \int_{3}^{b}\left(\frac{1}{x-2}-\frac{1}{x}\right) d x\) \(=\int_{3}^{\infty}\left(\frac{1}{x-2}-\frac{1}{x}\right) d x\) \(=\int_{3}^{\infty} \frac{1}{x-2} d x-\int_{3}^{\infty} \frac{1}{x} d x\) \(=\lim _{b \rightarrow \infty}[\ln (x-2)]_{3}^{b}-\lim _{b \rightarrow \infty}[\ln x]_{3}^{b}\) \(=\infty-\infty .\)
Show that the inequalities \(0.692 \leq \int_{0}^{1} x^{x} d x \leq 1\) are valid.
Let \(\mathrm{f}(\mathrm{x})=\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}\). Shows that \(\int_{c-h}^{c+h} f(x) d x=\frac{h}{3}[f(c-h)+4 f(c)+f(c+h)] .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.