Chapter 2: Problem 14
Given the function \(f(x)=\left\\{\begin{array}{l}x^{2} \text { for } 0 \leq x<1 \\ \sqrt{x} \text { for } 1 \leq x \leq 2\end{array}\right.\) Compute \(\int_{0}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}\).
Chapter 2: Problem 14
Given the function \(f(x)=\left\\{\begin{array}{l}x^{2} \text { for } 0 \leq x<1 \\ \sqrt{x} \text { for } 1 \leq x \leq 2\end{array}\right.\) Compute \(\int_{0}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int_{-\infty}^{\infty} \frac{x d x}{x^{4}+1}\) (ii) \(\int_{0}^{1} \frac{\ln (1-x)}{x} \mathrm{dx}\) (iii) \(\int_{0}^{\infty} \frac{\mathrm{dx}}{(\mathrm{x}+1)(\mathrm{x}+2)}\) (iv) \(\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}, a, b>0 .\)
Evaluate the following integrals: (i) \(\int_{0}^{\pi / 2} \sin ^{5} x \cos ^{4} x d x\) (ii) \(\int_{0}^{\frac{\pi}{2}} \sin ^{7} x \cos ^{4} x d x\) (iii) \(\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{5} x d x\) (iv) \(\int_{0}^{\pi} \sin ^{6} \frac{x}{2} \cos ^{8} \frac{x}{2} d x\)
Evaluate the following integrals : (i) \(\int_{0}^{3 \pi / 2} \cos ^{4} 3 x \cdot \sin ^{2} 6 x d x\) (ii) \(\int_{0}^{1} x^{6} \sin ^{-1} x d x\) (iii) \(\int_{0}^{1} x^{3}(1-x)^{9 / 2} d x\) (iv) \(\int_{0}^{1} x^{4}(1-x)^{1 / 4} d x\)
Evaluate \(\int_{0}^{1} \frac{\tan ^{-1} \mathrm{ax}}{\mathrm{x} \sqrt{1-\mathrm{x}^{2}}} \mathrm{dx}\)
Show that \(0.78<\int_{0}^{1} \frac{d x}{\sqrt{1+x^{4}}}<0.93\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.