Chapter 2: Problem 14
Find \(\int_{0}^{1} x^{p}(1-x)^{q} d x\) (p and q positive integers).
Chapter 2: Problem 14
Find \(\int_{0}^{1} x^{p}(1-x)^{q} d x\) (p and q positive integers).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : (i) \(\int_{0}^{1}\left(1-x^{2}\right)^{n} d x\) (ii) \(\int_{0}^{1} \frac{x^{2 n} d x}{\sqrt{1-x^{2}}}\) (iii) \(\int_{0}^{2 \mathrm{a}} \mathrm{x}^{9 / 2}(2 \mathrm{a}-\mathrm{x})^{-1 / 2} \mathrm{dx}\) (iv) \(\int_{0}^{\infty} \frac{x^{4} d x}{\left(a^{2}+x^{2}\right)^{2}}\)
For each \(x>0 .\) let \(G(x)\) \(=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{xt}} \mathrm{dt}\). Prove that \(\mathrm{xG}(\mathrm{x})=1\) for each \(\mathrm{x}>0\).
Assume \(\int\) is continuous on \([a, b]\). Assume also that \(\int_{a}^{b} f(x) g(x) d x=0\) for every function \(g\) that is continuous on \([\mathrm{a}, \mathrm{b}]\). Prove that \(\mathrm{f}(\mathrm{x})=0\) for all xin [a. b]
Prove that \(\int_{0}^{1} x^{n} \ln x d x=\frac{1}{(n+1)^{2}}, \quad n>-1\)
Prove that \(\int_{0}^{\pi / 2} \cos ^{\mathrm{m}} \mathrm{x} \sin ^{\mathrm{m}} \mathrm{xd} \mathrm{x}=2^{-\mathrm{m}} \int_{0}^{\pi / 2} \cos ^{\mathrm{m}} \mathrm{xdx} .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.