Chapter 2: Problem 13
Show that \(\int_{a}^{b}[x] \mathrm{d} x+\int_{a}^{b}[-x] \mathrm{d} x=a-b\).
Chapter 2: Problem 13
Show that \(\int_{a}^{b}[x] \mathrm{d} x+\int_{a}^{b}[-x] \mathrm{d} x=a-b\).
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : (i) \(\int_{0}^{\pi / 2} \sin ^{5} x d x\) (ii) \(\int_{0}^{\frac{1}{2} \pi} \cos ^{6} x d x\)
Find \(\int_{0}^{2} f(x) d x\), where
\(f(x)=\left\\{\begin{array}{c}\frac{1}{\sqrt[4]{x^{3}}} \quad \text { for } 0
\leq x \leq 1 \\ \frac{1}{\sqrt[4]{(x-1)^{3}}}\end{array}\right.\) for \(1
If a is positive and \(\mathrm{I}=\int_{-1}^{1} \frac{\mathrm{dx}}{\sqrt{1-2 \mathrm{ax}+\mathrm{a}^{2}}}\) then show that \(\mathrm{I}=2 \mathrm{ifa}<1\) and \(\mathrm{I}=\frac{2}{\mathrm{a}}\) if \(\mathrm{a}>1\).
Showthat \(\int_{0}^{\pi} \frac{\ell \mathrm{n}(1+\mathrm{a} \cos \mathrm{x})}{\cos \mathrm{x}} \mathrm{dx}=\pi \sin ^{-1} \mathrm{a},(|\mathrm{a}|<1)\)
A honeybee population starts with 100 bees and increases at a rate of \(\mathrm{n}^{\prime}(\mathrm{t})\) bees per week. What does \(100+\int_{0}^{15} \mathrm{n}^{\prime}(\mathrm{t}) \mathrm{dt}\) represent?
What do you think about this solution?
We value your feedback to improve our textbook solutions.