Chapter 2: Problem 13
Prove the inequalities: (i) \(\int_{1}^{3} \sqrt{x^{4}+1} d x \geq \frac{26}{3}\)(iii) \(\frac{1}{17} \leq \int_{1}^{2} \frac{1}{1+x^{4}} \mathrm{dx} \leq \frac{7}{24}\).
Chapter 2: Problem 13
Prove the inequalities: (i) \(\int_{1}^{3} \sqrt{x^{4}+1} d x \geq \frac{26}{3}\)(iii) \(\frac{1}{17} \leq \int_{1}^{2} \frac{1}{1+x^{4}} \mathrm{dx} \leq \frac{7}{24}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(\mathrm{f}(\mathrm{x})=\mathrm{A} x^{2}+\mathrm{Bx}+\mathrm{C}\). Show that \(\int_{-\mathrm{h}}^{\mathrm{h}} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\frac{\mathrm{h}}{3}[\mathrm{f}(-\mathrm{h})+4 \mathrm{f}(0)+\mathrm{f}(\mathrm{h})]\)
For each \(x>0 .\) let \(G(x)\) \(=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{xt}} \mathrm{dt}\). Prove that \(\mathrm{xG}(\mathrm{x})=1\) for each \(\mathrm{x}>0\).
If \(\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{3 / 2}}\), prove that, \(\ell \mathrm{n} 2<\mathrm{I}<\frac{\pi}{4}\).
Evaluate the following limits: (i) \(\lim _{n \rightarrow x} \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots .+\frac{1}{4 n}\) (ii) \(\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{n^{2}}{(n+1)^{3}}+\frac{n^{2}}{(n+2)^{3}} \ldots .+\frac{1}{8 n}\right]\) (iii) \(\lim _{n \rightarrow \infty}\left[\frac{n+1}{n^{2}+1^{2}}+\frac{n+2}{n^{2}+2^{2}}+\frac{n+3}{n^{2}+3^{2}}+\ldots . .+\frac{3}{5 n}\right]\)
Prove that \(\int_{a}^{b} \frac{d x}{\sqrt{\\{(x-a)(b-x)\\}}}=\pi\), \(\int_{a}^{b} \frac{x d x}{\sqrt{\\{(x-a)(b-x)\\}}}=\frac{1}{2} \pi(a+b)\) (i) by means of the substitution \(\mathrm{x}=\mathrm{a}+(\mathrm{b}-\mathrm{a}) \mathrm{t}^{2}\), (ii) bymeans of the substitution \((\mathrm{b}-\mathrm{x})(\mathrm{x}-\mathrm{a})=\mathrm{t}\), and (iii) by means of the substitution \(x=a \cos ^{2} t\) \(+b \sin ^{2} t\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.