Chapter 2: Problem 13
Explain why \(\frac{1}{100} \sum_{i=1}^{100} f\left(\frac{i}{100}\right)\) is an estimate of \(\int_{0}^{1} f(x) d x\)
Chapter 2: Problem 13
Explain why \(\frac{1}{100} \sum_{i=1}^{100} f\left(\frac{i}{100}\right)\) is an estimate of \(\int_{0}^{1} f(x) d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFor each \(x>0 .\) let \(G(x)\) \(=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{xt}} \mathrm{dt}\). Prove that \(\mathrm{xG}(\mathrm{x})=1\) for each \(\mathrm{x}>0\).
Prove that \(\int_{0}^{2 \lambda} \frac{\sin x}{x} d x=\int_{0}^{i} \frac{\sin 2 y}{y} d y=\frac{\sin ^{2} \lambda}{\lambda}+\int_{0}^{i} \frac{\sin ^{2} x}{x^{2}} d x .\) Deduce that \(\int_{0}^{\infty} \frac{\sin x}{x} d x=\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x\) (It may be assumed that the integrals are convergent)
Evaluate the following integrals: (i) \(\int_{-\infty}^{\infty} \frac{x d x}{x^{4}+1}\) (ii) \(\int_{0}^{1} \frac{\ln (1-x)}{x} \mathrm{dx}\) (iii) \(\int_{0}^{\infty} \frac{\mathrm{dx}}{(\mathrm{x}+1)(\mathrm{x}+2)}\) (iv) \(\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}, a, b>0 .\)
It is known that \(\int_{a}^{b} f(x) d x>\int_{a}^{b} g(x) d x\). Does it follow that \(\mathrm{f}(\mathrm{x}) \geq \mathrm{g}(\mathrm{x}) \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}] ?\) Give examples.
Evaluate the following limits: (i) \(\lim _{n \rightarrow \infty}\left(\frac{n+1}{n^{2}+1^{2}}+\frac{n+2}{n^{2}+2^{2}}+\ldots .+\frac{1}{n}\right)\) (ii) \(\lim _{n \rightarrow \infty} \frac{2^{k}+4^{k}+6^{k}+. .+(2 n)^{k}}{n^{k+1}}, k \neq-1\) (iii) \(\lim _{n \rightarrow \infty} \frac{3}{n}\left[1+\sqrt{\frac{n}{n+3}}+\sqrt{\frac{n}{n+6}}+\sqrt{\frac{n}{n+9}}+\ldots . .\right.\) \(\left.\ldots+\sqrt{\frac{n}{n+3(n-1)}}\right]\) (iv) \(\lim _{n \rightarrow x} \frac{n^{2}}{\left(n^{2}+1\right)^{3 / 2}}+\frac{n^{2}}{\left(n^{2}+2^{2}\right)^{3 / 2}}+\) \(\ldots+\frac{\mathrm{n}^{2}}{\left[\mathrm{n}^{2}+(\mathrm{n}-1)^{2}\right]^{3 / 2}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.