Chapter 2: Problem 12
Find a cubic polynomial P for which \(\mathrm{P}(0)=\mathrm{P}(-2)=0, \mathrm{P}(1)=15\), and \(3 \int_{-2}^{0} \mathrm{P}(\mathrm{x}) \mathrm{dx}=4\).
Chapter 2: Problem 12
Find a cubic polynomial P for which \(\mathrm{P}(0)=\mathrm{P}(-2)=0, \mathrm{P}(1)=15\), and \(3 \int_{-2}^{0} \mathrm{P}(\mathrm{x}) \mathrm{dx}=4\).
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x\)
Prove that (i) \(\int_{1}^{2} \frac{d x}{(x+1) \sqrt{x^{2}-1}}=\frac{1}{\sqrt{3}}\). (ii) \(\int_{0}^{1} \frac{\mathrm{dx}}{(1+x)(2+x) \sqrt{x(1-x)}}=\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{6}}\right)\).
Given that \(\int_{0}^{1} \frac{\ln x}{(1+x) \sqrt{x}} d x\) is a convergent improper integral, prove that \(\int_{0}^{\infty} \frac{\ln x d x}{(1+x) \sqrt{x}}=0\).
For each \(x>0 .\) let \(G(x)\) \(=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{xt}} \mathrm{dt}\). Prove that \(\mathrm{xG}(\mathrm{x})=1\) for each \(\mathrm{x}>0\).
Evaluate the following integrals : (i) \(\int_{0}^{1}\left(1-x^{2}\right)^{n} d x\) (ii) \(\int_{0}^{1} \frac{x^{2 n} d x}{\sqrt{1-x^{2}}}\) (iii) \(\int_{0}^{2 \mathrm{a}} \mathrm{x}^{9 / 2}(2 \mathrm{a}-\mathrm{x})^{-1 / 2} \mathrm{dx}\) (iv) \(\int_{0}^{\infty} \frac{x^{4} d x}{\left(a^{2}+x^{2}\right)^{2}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.