Chapter 2: Problem 12
Evaluate \(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}\left(5+\frac{2 i}{n}\right)^{2}\)
Chapter 2: Problem 12
Evaluate \(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n}\left(5+\frac{2 i}{n}\right)^{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the signs of the integrals without evaluating them : (a) \(\int_{-1}^{2} x^{3} d x\) (b) \(\int_{0}^{2 \pi \sin x}{x} d x\) (c) \(\int_{0}^{\pi} x \cos x d x\).
Prove that \(\lim _{\omega \rightarrow \infty} \frac{e^{k m^{2} x^{2}}}{\int_{a}^{b} e^{k m^{2} x^{2}} d x}= \begin{cases}0 & \text { if } x0, \mathrm{k}>0, \mathrm{~b}>\mathrm{a}>0)\)
Showthat \(\int_{0}^{\pi} \frac{\ell \mathrm{n}(1+\mathrm{a} \cos \mathrm{x})}{\cos \mathrm{x}} \mathrm{dx}=\pi \sin ^{-1} \mathrm{a},(|\mathrm{a}|<1)\)
Show that \(\int_{0}^{\infty} x^{-\mathrm{rx}} \sin a x \mathrm{~d} x\) equals \(a /\left(a^{2}+r^{2}\right)\), where \(r>0\) and a are constant.
A function \(\mathrm{f}\), continuous on the positive real axis, has the property that \(\int_{1}^{x y} f(t) d t=y \int_{1}^{x} f(t) d t+x \int_{1}^{y} f(t) d t\) for all \(x>0\) and all \(y>0 .\) If \(f(1)=3\), compute \(\mathrm{f}(\mathrm{x})\) for each \(\mathrm{x}>0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.