Chapter 2: Problem 11
Show that (i) \(\mathrm{I}_{\mathrm{n}}=\int_{0}^{x} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)^{\mathrm{n}}}=\frac{2 \mathrm{n}-3}{2 \mathrm{n}-2} \mathrm{I}_{\mathrm{n}-1}\) (ii) \(\int_{0}^{\infty} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)^{5}}=\frac{1.3 \cdot 5.7}{2.4 .6 .8} \frac{\pi}{2}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.