Chapter 2: Problem 11
Make sure that a formal change of the variable \(\mathrm{t}=\mathrm{x}^{2 / 5}\) leads to the wrong result in the integral \(\int_{-2}^{2} \sqrt[5]{\mathrm{x}^{2}} \mathrm{dx} .\) Find the mistake and explain it.
Chapter 2: Problem 11
Make sure that a formal change of the variable \(\mathrm{t}=\mathrm{x}^{2 / 5}\) leads to the wrong result in the integral \(\int_{-2}^{2} \sqrt[5]{\mathrm{x}^{2}} \mathrm{dx} .\) Find the mistake and explain it.
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven that \(\int_{0}^{1} \frac{\ln x}{(1+x) \sqrt{x}} d x\) is a convergent improper integral, prove that \(\int_{0}^{\infty} \frac{\ln x d x}{(1+x) \sqrt{x}}=0\).
Prove that (a) \(\pi=\lim _{n \rightarrow \infty} \frac{4}{n^{2}}\left(\sqrt{n^{2}-1}+\sqrt{n^{2}-2^{2}}+\ldots+\sqrt{n^{2}-n^{2}}\right)\). (b) \(\int_{1}^{3}\left(x^{2}+1\right) d x=\lim _{n \rightarrow \infty} \frac{4}{n^{3}} \sum_{i=1}^{n}\left(n^{2}+2 i n+2 i^{2}\right)\).
Let \(\mathrm{f}\) be twice continuously differentiable in \([0,2 \pi]\) and concave up. Prove that \(\int_{0}^{2 \pi} f(x) \cos x d x \geq 0\)
Show that \(\int_{0}^{1} \frac{\ell n\left(1-a^{2} x^{2}\right)}{x^{2} \sqrt{\left(1-x^{2}\right)}} d x\) \(=\pi\left[\sqrt{1-a^{2}}-1\right],\left(a^{2}<1\right)\)
Prove that \(\lim _{\lambda \rightarrow \infty} \int_{0}^{\infty} \frac{1}{1+\lambda x^{4}} d x=0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.