Chapter 2: Problem 11
Find \(\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}}\left(\int_{0}^{\mathrm{x}^{2}} \frac{\mathrm{dt}}{\sqrt{1-5 \mathrm{t}^{3}}}\right)^{2}\)
Chapter 2: Problem 11
Find \(\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}}\left(\int_{0}^{\mathrm{x}^{2}} \frac{\mathrm{dt}}{\sqrt{1-5 \mathrm{t}^{3}}}\right)^{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the signs of the integrals without evaluating them : (a) \(\int_{-1}^{2} x^{3} d x\) (b) \(\int_{0}^{2 \pi \sin x}{x} d x\) (c) \(\int_{0}^{\pi} x \cos x d x\).
Let \(\mathrm{f}\) be a function. Show that there is a parabola \(\mathrm{y}=\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}\) that passes through the three points \((-\mathrm{h}, \mathrm{f}(-\mathrm{h})),(0, \mathrm{f}(0))\), and \((\mathrm{h}, \mathrm{f}(\mathrm{h}))\).
Evaluate \(\int_{0}^{1} \frac{\tan ^{-1} \mathrm{ax}}{\mathrm{x} \sqrt{1-\mathrm{x}^{2}}} \mathrm{dx}\)
Show that the inequalities \(0.692 \leq \int_{0}^{1} x^{x} d x \leq 1\) are valid.
Which of following integrals are improper ? Why? (a) \(\int_{1}^{2} \frac{1}{2 x-1} \mathrm{dx}\) (b) \(\int_{0}^{1} \frac{1}{2 x-1} d x\) (c) \(\int_{-\infty}^{\infty} \frac{\sin x}{1+x^{2}} d x\) (d) \(\int_{1}^{2} \ln (x-1) d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.