Chapter 2: Problem 10
If \(\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{3 / 2}}\), prove that, \(\ell \mathrm{n} 2<\mathrm{I}<\frac{\pi}{4}\).
Chapter 2: Problem 10
If \(\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{3 / 2}}\), prove that, \(\ell \mathrm{n} 2<\mathrm{I}<\frac{\pi}{4}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose f is continuous, \(f(0)=0, f(1)=1, f^{\prime}(x)>0\), and \(\int_{0}^{1} f(x) d x=\frac{1}{3}\). Find the value of the integral \(\int_{0}^{1} \mathrm{f}^{-1}(\mathrm{y}) \mathrm{dy}\)
Let p be a polynomial of degree atmost 4 such that \(\mathrm{p}(-1)=\mathrm{p}(1)=0\) and \(\mathrm{p}(0)=1\). If \(\mathrm{p}(\mathrm{x}) \leq 1\) for \(x \in[-1,1]\), find the largest value of \(\int^{1} p(x) d x\)
Let \(\mathrm{f}(\mathrm{x})=\mathrm{A} x^{2}+\mathrm{Bx}+\mathrm{C}\). Show that \(\int_{-\mathrm{h}}^{\mathrm{h}} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\frac{\mathrm{h}}{3}[\mathrm{f}(-\mathrm{h})+4 \mathrm{f}(0)+\mathrm{f}(\mathrm{h})]\)
Prove that (i) \(\int_{1}^{\infty} \frac{\mathrm{dx}}{\left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+1}\right)^{\mathrm{n}}}=\frac{\mathrm{n}}{\mathrm{n}^{2}-1}, \mathrm{n}>1\) (ii) \(\int_{1}^{\infty} \frac{d x}{\left(1+e^{x}\right)\left(1+e^{-x}\right)}=1\) (iii) \(\int_{0}^{\infty} \frac{x \ln x}{\left(1+x^{2}\right)^{2}} d x=0\) (iv) \(\int_{0}^{\infty} \frac{\sqrt{x}}{(1+x)^{2}} d x=\frac{1}{2}+\frac{1}{4} \pi\).
Find the sum of the series \(\frac{x^{2}}{1.2}-\frac{x^{3}}{2.3}+\frac{x^{4}}{3.4}-\ldots+(-1)^{n+1} \frac{x^{n+1}}{n(n+1)}+\ldots,|x|<1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.