Chapter 2: Problem 10
Find the value of the function \(\mathrm{f}(\mathrm{x})=1+\mathrm{x}\) \(+\int_{1}^{x}\left((\ln t)^{2}+2 \ln t\right)\) dt where \(f^{\prime}(x)\) vanishes.
Chapter 2: Problem 10
Find the value of the function \(\mathrm{f}(\mathrm{x})=1+\mathrm{x}\) \(+\int_{1}^{x}\left((\ln t)^{2}+2 \ln t\right)\) dt where \(f^{\prime}(x)\) vanishes.
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : (i) \(\int_{1}^{\infty} \frac{d x}{x^{2}(x+1)}\) (ii) \(\int_{0}^{\infty} x^{3} e^{-x^{2}} d x\) (iii) \(\int_{0}^{\frac{1}{6}} \frac{\mathrm{dx}}{\mathrm{x} \ln ^{2} \mathrm{x}}\) (iv) \(\int_{-\infty}^{\infty} \frac{d x}{x^{2}+2 x+2}\)
Determine the signs of the integrals without evaluating them : (a) \(\int_{-1}^{2} x^{3} d x\) (b) \(\int_{0}^{2 \pi \sin x}{x} d x\) (c) \(\int_{0}^{\pi} x \cos x d x\).
Evaluate the following integrals: (i) \(\int_{-1}^{0} \frac{e^{\frac{1}{x}}}{x^{3}} d x\) (ii) \(\int_{-\infty}^{\infty} \frac{1}{e^{x}+e^{-x}} d x\) (iii) \(\int_{3}^{5} \frac{x^{2} d x}{\sqrt{(x-3)(5-x)}}\) (iv) \(\int_{-1}^{1} \frac{d x}{(2-x) \sqrt{1-x^{2}}}\)
Let \(\mathrm{f}\) be a function. Show that there is a parabola \(\mathrm{y}=\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}\) that passes through the three points \((-\mathrm{h}, \mathrm{f}(-\mathrm{h})),(0, \mathrm{f}(0))\), and \((\mathrm{h}, \mathrm{f}(\mathrm{h}))\).
The linear density of a rod of length \(4 \mathrm{~m}\) is given by \(\rho(\mathrm{x})=9+2 \sqrt{\mathrm{x}}\) measured in kilograms per metre, where \(\mathrm{x}\) is measured in metres from one end of the rod. Find the total mass of the rod.
What do you think about this solution?
We value your feedback to improve our textbook solutions.