Chapter 2: Problem 10
Determine a region whose area is equal to the limit \(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{4 n} \tan \frac{i \pi}{4 n}\). Donot evaluate the limit.
Chapter 2: Problem 10
Determine a region whose area is equal to the limit \(\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{4 n} \tan \frac{i \pi}{4 n}\). Donot evaluate the limit.
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Make a conjecture about the value of the limit \(\lim _{k \rightarrow 0} \int_{1}^{b} t^{k-1} d t(b>0)\) (b) Check your conjecture by evaluating the integral and finding the limit. [Hint: Interpret the limit as the definition of the derivative of an exponential function]
Show that \(\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{dx}=\int_{0}^{1} \sqrt{-\ell \text { ny }}\) dy by interpreting th -
Evaluate the following integrals : (i) \(\int_{0}^{1}\left(1-x^{2}\right)^{n} d x\) (ii) \(\int_{0}^{1} \frac{x^{2 n} d x}{\sqrt{1-x^{2}}}\) (iii) \(\int_{0}^{2 \mathrm{a}} \mathrm{x}^{9 / 2}(2 \mathrm{a}-\mathrm{x})^{-1 / 2} \mathrm{dx}\) (iv) \(\int_{0}^{\infty} \frac{x^{4} d x}{\left(a^{2}+x^{2}\right)^{2}}\)
If oil leaks from a tank at a rate of \(\mathrm{r}(\mathrm{t})\) litres per minute at time \(t\), what does \(\int_{0}^{120} r(t) d t\) represent?
Prove that (i) \(\int_{1}^{2} \frac{d x}{(x+1) \sqrt{x^{2}-1}}=\frac{1}{\sqrt{3}}\). (ii) \(\int_{0}^{1} \frac{\mathrm{dx}}{(1+x)(2+x) \sqrt{x(1-x)}}=\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{6}}\right)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.