Chapter 2: Problem 10
Assume that \(\mathrm{f}\) is integrable and nonnegative on \([a, b] .\) If \(\int_{a}^{b} f(x) d x=0\), prove that \(f(c)=0\) at each point of continuity of \(f\).
Chapter 2: Problem 10
Assume that \(\mathrm{f}\) is integrable and nonnegative on \([a, b] .\) If \(\int_{a}^{b} f(x) d x=0\), prove that \(f(c)=0\) at each point of continuity of \(f\).
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that (i) \(\frac{99 \pi}{400}<\int_{1}^{100} \frac{\tan ^{-1} x}{x^{2}} d x<\frac{99 \pi}{200}\) (ii) \(\frac{609(\ln 2)^{2}}{4}<\int_{2}^{5} x^{3}(\ln x)^{2} d x<\frac{609(\ln 5)^{2}}{4}\) (iii) \(\left(1-\mathrm{e}^{-1}\right) \ln 10<\int_{1}^{10} \frac{1-\mathrm{e}^{-x}}{\mathrm{x}} \mathrm{dx}<\ln 10\) (iv) \(\frac{1}{10 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{9}}{\sqrt{1+x}} d x \leq \frac{1}{10}\).
Show that \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x\)
Suppose that the velocity function of a particle moving along a line is \(v(t)=3 t^{3}+2\). Find the average velocity of the particle over the time interval \(1 \leq \mathrm{t} \leq 4\) by integrating.
Evaluate the following limits: (i) \(\lim _{n \rightarrow \infty}\left(\frac{n+1}{n^{2}+1^{2}}+\frac{n+2}{n^{2}+2^{2}}+\ldots .+\frac{1}{n}\right)\) (ii) \(\lim _{n \rightarrow \infty} \frac{2^{k}+4^{k}+6^{k}+. .+(2 n)^{k}}{n^{k+1}}, k \neq-1\) (iii) \(\lim _{n \rightarrow \infty} \frac{3}{n}\left[1+\sqrt{\frac{n}{n+3}}+\sqrt{\frac{n}{n+6}}+\sqrt{\frac{n}{n+9}}+\ldots . .\right.\) \(\left.\ldots+\sqrt{\frac{n}{n+3(n-1)}}\right]\) (iv) \(\lim _{n \rightarrow x} \frac{n^{2}}{\left(n^{2}+1\right)^{3 / 2}}+\frac{n^{2}}{\left(n^{2}+2^{2}\right)^{3 / 2}}+\) \(\ldots+\frac{\mathrm{n}^{2}}{\left[\mathrm{n}^{2}+(\mathrm{n}-1)^{2}\right]^{3 / 2}}\)
Let \(\mathrm{f}\) be a function. Show that there is a parabola \(\mathrm{y}=\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}\) that passes through the three points \((-\mathrm{h}, \mathrm{f}(-\mathrm{h})),(0, \mathrm{f}(0))\), and \((\mathrm{h}, \mathrm{f}(\mathrm{h}))\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.