Chapter 2: Problem 1
If \(F(t)=\int_{2}^{3} \sin \left(x+t^{2}\right) d x\), find \(F^{\prime}(t)\).
Chapter 2: Problem 1
If \(F(t)=\int_{2}^{3} \sin \left(x+t^{2}\right) d x\), find \(F^{\prime}(t)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that \(\int_{a}^{b} \frac{d x}{\sqrt{\\{(x-a)(b-x)\\}}}=\pi\), \(\int_{a}^{b} \frac{x d x}{\sqrt{\\{(x-a)(b-x)\\}}}=\frac{1}{2} \pi(a+b)\) (i) by means of the substitution \(\mathrm{x}=\mathrm{a}+(\mathrm{b}-\mathrm{a}) \mathrm{t}^{2}\), (ii) bymeans of the substitution \((\mathrm{b}-\mathrm{x})(\mathrm{x}-\mathrm{a})=\mathrm{t}\), and (iii) by means of the substitution \(x=a \cos ^{2} t\) \(+b \sin ^{2} t\)
Prove that (i) \(0<\int_{0}^{2} \frac{x \mathrm{dx}}{16+x^{3}}<\frac{1}{6}\) (ii) \(\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1+\mathrm{x}^{4}}} \geq \frac{\pi}{4}\) (iv) \(\int_{0}^{1} \frac{d x}{4+x^{3}}>\ln \frac{5}{4}\) (iii) \(\int_{1}^{100} \mathrm{e}^{-\mathrm{x}} \sin ^{2} \mathrm{x} \mathrm{dx}<1\)
Prove that \(\lim _{\lambda \rightarrow \infty} \int_{0}^{\infty} \frac{1}{1+\lambda x^{4}} d x=0\).
Given that f satisfies \(|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})| \leq|\mathrm{u}-\mathrm{v}|\) for \(\mathrm{u}\) and \(v\) in \([a, b]\) then prove that (i) \(\mathrm{f}\) is continuous in \([\mathrm{a}, \mathrm{b}]\) and (ii) \(\left|\int_{a}^{b} f(x) d x-(b-a) f(a)\right| \leq \frac{(b-a)^{2}}{2}\).
For each \(x>0 .\) let \(G(x)\) \(=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{xt}} \mathrm{dt}\). Prove that \(\mathrm{xG}(\mathrm{x})=1\) for each \(\mathrm{x}>0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.