Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Express the following limits in the form of an integral. $$ \begin{aligned} &\text { (i) } \lim _{\mathbb{a} \rightarrow \infty} \frac{1}{\mathrm{n}}\left(\cos \frac{\pi}{\mathrm{n}}+\cos \frac{2 \pi}{\mathrm{n}}+\ldots+\cos \frac{\mathrm{n} \pi}{\mathrm{n}}\right) \\ &\text { (ii) } \lim _{\mathrm{n} \rightarrow x} \frac{\pi}{6 \mathrm{n}}\left[\sec ^{2}\left(\frac{\pi}{6 \mathrm{n}}\right)+\sec ^{2}\left(2 \frac{\pi}{6 \mathrm{n}}\right)+\ldots\right. \\ &\left.\ldots+\sec ^{2}\left((\mathrm{n}-1) \frac{\pi}{6 \mathrm{n}}\right)+\frac{4}{3}\right] \end{aligned} $$

Short Answer

Expert verified
- The function to be integrated is \(f(x)=\cos(\pi x)\). 2) Over which interval should the function in part (i) be integrated? - The function should be integrated over the interval [0, 1]. 3) What function should be integrated to represent the limit in part (ii)? - The function to be integrated is \(f(x)=\sec^2(\frac{\pi}{6}x)\). 4) Over which interval should the function in part (ii) be integrated? - The function should be integrated over the interval [0, 1]. 5) What constant should be added to the integral in part (ii) to represent the given limit? - 4/3 should be added to the integral.

Step by step solution

01

(i) Change the limit to Riemann sum

To find the integral representation of the given limit, we need to identify the function and its corresponding interval in the limit. The limit takes the following form: $$ \lim_{n \rightarrow \infty} \frac{1}{n} \left(\cos \frac{\pi}{n}+\cos \frac{2 \pi}{n}+\ldots+\cos \frac{n \pi}{n}\right) $$ We can rewrite it in the Riemann sum form, with the function \(f(x) = \cos(\pi x)\), and \(x_k = \frac{k}{n}\) for \(k=1,2,\dots,n\): $$ \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^n f(x_k) $$
02

(i) Find the integral representation

Using the Riemann sum definition of the integral, the limit can be represented by the integral of the function \(f(x)=\cos(\pi x)\) over the interval \([0, 1]\). So, we have: $$ \lim_{n \rightarrow \infty} \frac{1}{n}\left(\cos \frac{\pi}{n}+\cos \frac{2 \pi}{n}+\ldots+\cos \frac{n \pi}{n}\right) = \int_0^1 \cos (\pi x) dx $$
03

(ii) Change the limit to Riemann sum

Similar to part (i), we need to identify the function and the corresponding interval in the limit. The limit takes the form: $$ \lim_{n \rightarrow \infty} \frac{\pi}{6n} \left[\sec^2\left(\frac{\pi}{6n}\right)+\sec^2\left(2 \frac{\pi}{6n}\right)+\ldots+\sec^2\left((n-1) \frac{\pi}{6n}\right)+\frac{4}{3}\right] $$ We can rewrite it in the Riemann sum form, with the function \(f(x) = \sec^2(\frac{\pi}{6}x)\) (note that we need to subtract the constant term \(\frac{4}{3}\) after we evaluate the integral), and \(x_k = \frac{k}{n}\) for \(k=1,2,\dots,n-1\): $$ \lim_{n \rightarrow \infty} \frac{\pi}{6n} \left(\sum_{k=1}^{n-1} f(x_k)+\frac{4}{3}\right) $$
04

(ii) Find the integral representation

Now, we represent the limit using the integral of the function \(f(x)=\sec^2(\frac{\pi}{6}x)\) over the interval \([0,1]\). Don't forget to include the constant \(\frac{4}{3}\) after evaluating the integral: $$ \lim_{n \rightarrow \infty} \frac{\pi}{6n} \left[\sec^2\left(\frac{\pi}{6n}\right)+\sec^2\left(2 \frac{\pi}{6n}\right)+\ldots+\sec^2\left((n-1) \frac{\pi}{6n}\right)+\frac{4}{3}\right] = \int_0^1 \sec^2\left(\frac{\pi}{6}x\right) dx + \frac{4}{3} $$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free