Chapter 2: Problem 1
Evaluate the following integrals : (i) \(\int_{0}^{\pi / 2} \sin ^{5} x d x\) (ii) \(\int_{0}^{\frac{1}{2} \pi} \cos ^{6} x d x\)
Chapter 2: Problem 1
Evaluate the following integrals : (i) \(\int_{0}^{\pi / 2} \sin ^{5} x d x\) (ii) \(\int_{0}^{\frac{1}{2} \pi} \cos ^{6} x d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeProve the inequalities: (i) \(\int_{1}^{3} \sqrt{x^{4}+1} d x \geq \frac{26}{3}\)(iii) \(\frac{1}{17} \leq \int_{1}^{2} \frac{1}{1+x^{4}} \mathrm{dx} \leq \frac{7}{24}\).
A honeybee population starts with 100 bees and increases at a rate of \(\mathrm{n}^{\prime}(\mathrm{t})\) bees per week. What does \(100+\int_{0}^{15} \mathrm{n}^{\prime}(\mathrm{t}) \mathrm{dt}\) represent?
Evaluate the following limits: (i) \(\lim _{n \rightarrow x} \frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots .+\frac{1}{4 n}\) (ii) \(\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{n^{2}}{(n+1)^{3}}+\frac{n^{2}}{(n+2)^{3}} \ldots .+\frac{1}{8 n}\right]\) (iii) \(\lim _{n \rightarrow \infty}\left[\frac{n+1}{n^{2}+1^{2}}+\frac{n+2}{n^{2}+2^{2}}+\frac{n+3}{n^{2}+3^{2}}+\ldots . .+\frac{3}{5 n}\right]\)
Prove that (i) \(\int_{1}^{2} \frac{d x}{x^{3}+3 x+1}<\frac{1}{5}\) (ii) \(3 \sqrt{23}<\int_{2}^{5} \sqrt{3 \mathrm{x}^{3}-1} \mathrm{dx}<10 \sqrt{15}-8 \sqrt{6} / 5\) (iii) \(2<\int_{0}^{4} \frac{d x}{1+\sin ^{2} x}<4\) (iv) \(\frac{\pi}{2}<\int_{0}^{\pi / 2} \frac{\mathrm{d} \theta}{\sqrt{1-\mathrm{k}^{2} \sin ^{2} \theta}}<\frac{\pi}{2 \sqrt{1-\mathrm{k}^{2}}}\left(0<\mathrm{k}^{2}<1\right)\).
Show that the inequalities \(0.692 \leq \int_{0}^{1} x^{x} d x \leq 1\) are valid.
What do you think about this solution?
We value your feedback to improve our textbook solutions.