Chapter 2: Problem 1
Derive a reduction formula and compute the integral \(\int_{-1}^{0} x^{n} e^{x} d x,(n\) is a positive integer \()\).
Chapter 2: Problem 1
Derive a reduction formula and compute the integral \(\int_{-1}^{0} x^{n} e^{x} d x,(n\) is a positive integer \()\).
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{dx}=\int_{0}^{1} \sqrt{-\ell \text { ny }}\) dy by interpreting th -
If \(\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{3 / 2}}\), prove that, \(\ell \mathrm{n} 2<\mathrm{I}<\frac{\pi}{4}\).
Prove that (i) \(0<\int_{0}^{2} \frac{x \mathrm{dx}}{16+x^{3}}<\frac{1}{6}\) (ii) \(\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1+\mathrm{x}^{4}}} \geq \frac{\pi}{4}\) (iv) \(\int_{0}^{1} \frac{d x}{4+x^{3}}>\ln \frac{5}{4}\) (iii) \(\int_{1}^{100} \mathrm{e}^{-\mathrm{x}} \sin ^{2} \mathrm{x} \mathrm{dx}<1\)
Determine the signs of the integrals without evaluating them : (a) \(\int_{-1}^{2} x^{3} d x\) (b) \(\int_{0}^{2 \pi \sin x}{x} d x\) (c) \(\int_{0}^{\pi} x \cos x d x\).
Prove that if \(|x|<1\) \(\frac{x^{3}}{1.3}-\frac{x^{5}}{3.5}+\frac{x^{7}}{5.7}-\ldots=\frac{1}{2}\left(1+x^{2}\right) \tan ^{-1} x-\frac{1}{2} x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.