Chapter 2: Problem 1
Applying the formula for integration by parts calculate the following integrals: (a) \(\int_{0}^{\ln 2} \mathrm{xe}^{-\mathrm{x}} \mathrm{dx}\) (b) \(\int_{0}^{2 \pi} x^{2} \cos x d x\) (c) \(\int_{0}^{1} \cos ^{-1} x d x\)
Chapter 2: Problem 1
Applying the formula for integration by parts calculate the following integrals: (a) \(\int_{0}^{\ln 2} \mathrm{xe}^{-\mathrm{x}} \mathrm{dx}\) (b) \(\int_{0}^{2 \pi} x^{2} \cos x d x\) (c) \(\int_{0}^{1} \cos ^{-1} x d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose that the velocity function of a particle moving along a line is \(v(t)=3 t^{3}+2\). Find the average velocity of the particle over the time interval \(1 \leq \mathrm{t} \leq 4\) by integrating.
Let p be a polynomial of degree atmost 4 such that \(\mathrm{p}(-1)=\mathrm{p}(1)=0\) and \(\mathrm{p}(0)=1\). If \(\mathrm{p}(\mathrm{x}) \leq 1\) for \(x \in[-1,1]\), find the largest value of \(\int^{1} p(x) d x\)
4\. Prove that (i) \(\frac{2 \pi}{13}<\int_{0}^{2 \pi} \frac{\mathrm{dx}}{10+3 \cos \mathrm{x}}<\frac{2 \pi}{7}\) (ii) \(0<\int_{0}^{\pi / 4} x \sqrt{\tan x}<\frac{\pi^{2}}{32}\) (iii) \(\frac{1}{2}<\int_{\pi / 4}^{\pi / 2} \frac{\sin \mathrm{x}}{\mathrm{x}} \mathrm{dx}<\frac{1}{\sqrt{2}}\) (iv) \(\left|\int_{1}^{4} \frac{\sin x}{x} d x\right| \leq \frac{3}{2}\).
Prove that \(\lim _{\lambda \rightarrow \infty} \int_{0}^{\infty} \frac{1}{1+\lambda x^{4}} d x=0\).
Evaluate \(\int_{0}^{a} \sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}} \cos ^{-1} \frac{\mathrm{x}}{\mathrm{a}} \mathrm{dx}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.