Chapter 1: Problem 9
\(\int \cos 2 x \ln (1+\tan x) d x\)
Chapter 1: Problem 9
\(\int \cos 2 x \ln (1+\tan x) d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \mathrm{e}^{\mathrm{x}} \frac{\left(\mathrm{x}^{2}-3 \mathrm{x}+3\right)}{(\mathrm{x}+2)^{2}} \mathrm{dx}\) (ii) \(\int \frac{\mathrm{e}^{\mathrm{x}}\left(\mathrm{x}^{2}+1\right)}{(\mathrm{x}+1)^{2}} \mathrm{dx}\) (iii) \(\int \mathrm{e}^{x} \frac{(1-x)^{2}}{\left(1+x^{2}\right)^{2}} d x\) (iv) \(\int \frac{x^{2} e^{x}}{(x+2)^{2}} d x\)
Evaluate the following integrals : $$ \int \frac{\left(1-x^{2}\right) d x}{x^{1 / 2}\left(1+x^{2}\right)^{3 / 2}} $$
Evaluate the following integrals : $$\int \frac{\left(x+\sqrt{1+x^{2}}\right)^{15}}{\sqrt{1+x^{2}}} d x$$
\(\int \frac{x^{2}-7 x+1}{\sqrt[3]{2 x+1}} d x\)
Evaluate the following integrals: $$ \int \frac{\left(2 x^{2}-3 x\right) d x}{\sqrt{x^{2}-2 x+5}} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.