Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the following integrals: (i) \(\int \frac{\cos x}{\cos x+\sin x} d x\) (ii) \(\frac{1}{a+b \cot x}\)

Short Answer

Expert verified
Answer: The final answer is \(-\ln{|\cos x+\sin x|}+C\). 2) What substitution was used to evaluate the integral \(\int \frac{1}{a+b \cot x} dx\)? Answer: The substitution used was \(u = \cot x\).

Step by step solution

01

(i) Evaluating \(\int \frac{\cos x}{\cos x+\sin x} d x\)

To evaluate the first integral, we should follow these steps: Step 1: Apply substitution Make a substitution for \(\cos x+\sin x\) where \(u = \cos x+\sin x\). Differentiate \(u\) with respect to \(x\) to get the differential form: \begin{align} \dfrac{d u}{d x}= -\sin x+\cos x d x. \end{align} Step 2: Rearrange and write terms in terms of \(u\) Re-write the integral in terms of \(u\): \begin{align} \int \dfrac{\cos x}{u} (-\sin x +\cos x ) d x = -\int \dfrac{1}{u} du. \end{align} Step 3: Evaluate the integral Now, evaluate the integral using the rule \(\int \dfrac{1}{u} du =\ln{|u|}+C\) where C is the constant of integration: \begin{align} -\int \dfrac{1}{u} du = -\ln{|u|}+C = -\ln{|\cos x+\sin x|}+C. \end{align} Step 4: Write the final answer Our final answer is: \begin{align} \int \dfrac{\cos x}{\cos x+\sin x} d x = -\ln{|\cos x+\sin x|}+C. \end{align}
02

(ii) Evaluating \(\frac{1}{a+b \cot x}\)

To evaluate the second integral, we should follow these steps: Step 1: Apply substitution Make a substitution for \(\cot x\) where \(u = \cot x\). So, \(\frac{du}{dx} = -\csc^2 x dx\). And, \(\csc^2x = \frac{1}{\sin^2 x}\). So, \(\frac{du}{dx} = -\frac{1}{\sin^2x} dx\). Step 2: Rewrite the integral in terms of \(u\) Re-write the integral in terms of \(u\): \begin{align} \int \frac{1}{a+b u} \left(-\frac{1}{\sin^2x}\right) d x = -\int \frac{1}{a+bu}\frac{1}{\sin^2x} dx = -\int \dfrac{1}{a+bu}\frac{-\sin^2 x}{\sin^2x} du. \end{align} Step 3: Evaluate the integral Now, evaluate the integral using the rule \(\int \dfrac{1}{k+lu} du =\dfrac{1}{l} \ln { |k+lu| }+C\) where C is the constant of integration: \begin{align} -\int \dfrac{1}{a+bu} du = -\ln{ |a+bu| }+C. \end{align} Step 4: Write the final answer Replace \(u\) with \(\cot x\): \begin{align} \int \dfrac{1}{a+b \cot x} d x = -\ln{ |a+b\cot x| }+C. \end{align}

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Evaluate the following integrals : (i) \(\int \frac{\cos x}{\sqrt{1+\cos x}} d x\) (ii) \(\int \frac{\mathrm{dx}}{\sin \mathrm{x} \sin (\mathrm{x}+\alpha)}\) (iii) \(\int\\{1+\cot (x-\alpha) \cot (x+\alpha\\} d x\)

Evaluate the following integrals: (i) \(\int \frac{x^{3}+x^{2}+x+3}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d\) ) (ii) \(\int \frac{d x}{x^{4}\left(x^{3}+1\right)^{2}}\) (iii) \(\int \frac{x^{7}+2}{\left(x^{2}+x+1\right)^{2}} d x\) (iv) \(\int \frac{3 x^{4}+4}{x^{2}\left(x^{2}+1\right)^{3}} d x\)

Evaluate the following integrals : (i) \(\int \frac{1}{x \sqrt{\left(1+x^{6}\right)}} d x\) (ii) \(\int \frac{x d x}{(p x+q)^{3 / 2}}\) (iii) \(\int \frac{x^{5}}{\sqrt{\left(1+x^{2}\right.}} d x\) (iv) \(\int \frac{d x}{x^{3} \sqrt{x^{2}+1}}\)

Evaluate the following integrals: (i) \(\int \frac{2 x^{3}+3 x^{2}+4 x+5}{2 x+1} d x\) (ii) \(\int\left(\frac{x^{-6}-64}{4+2 x^{-1}+x^{-2}}, \frac{x^{2}}{4-4 x^{-1}+x^{-2}} \frac{4 x^{2}(2 x+1)}{1-2 x}\right) \mathrm{dx}\) (iii) \(\int\left(\frac{\sqrt{x}}{2}-\frac{1}{2 \sqrt{x}}\right)^{2}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right) d x\) (iv) \(\int \frac{\sqrt{1-x^{2}}+1}{\sqrt{1-x}+1 / \sqrt{1+x}} d x\).

Evaluate the following integrals: (i) \(\int \frac{d x}{\left(x^{2}+4 x\right) \sqrt{4-x^{2}}}\) (ii) \(\int \frac{d x}{\left(4 x^{2}+4 x+1\right) \sqrt{\left(4 x^{2}+4 x+5\right)}}\) (iii) \(\int \frac{d x}{\left(x^{2}+2 x+2\right) \sqrt{x^{2}+2 x-4}}\) (iv) \(\int \frac{d x}{(x+1)^{3} \sqrt{x^{2}+3 x+2}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free