Chapter 1: Problem 8
\(\int \frac{x^{2}-7 x+1}{\sqrt[3]{2 x+1}} d x\)
Chapter 1: Problem 8
\(\int \frac{x^{2}-7 x+1}{\sqrt[3]{2 x+1}} d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int x^{3} e^{x} d x\) (ii) \(\int x^{3} \cos x d x\) (iii) \(\int x^{3} / n^{2} x d x\)
Prove that, when \(x>a>b\), \(\int \frac{d x}{(x-a)^{2}(x-b)}\) \(=\frac{1}{(a-b)^{2}} \ell n \frac{x-b}{x-a}-\frac{1}{(a-b)(x-a)}+C\)
Evaluate the following integrals : $$\int \frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{2}}-1}$$
Three of these six antiderivatives are elementary. Find them. (A) \(\int x \cos x d x\) (B) \(\int \frac{\cos x}{x} d x\) (C) \(\int \frac{x d x}{\ln x}\) (D) \(\int \frac{\ln x^{2}}{x} d x\) (E) \(\int \sqrt{x-1} \sqrt{x} \sqrt{x+1} d x\) (F) \(\int \sqrt{x-1} \sqrt{x+1} x d x\)
Evaluate the following integrals : $$ \int x^{-1}\left(1+x^{1 / 3}\right)^{-3} d x $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.