Chapter 1: Problem 8
Evaluate the following integrals : $$\int \frac{\left(x^{2}-1\right) d x}{x \sqrt{x^{4}+3 x^{2}+1}}$$
Chapter 1: Problem 8
Evaluate the following integrals : $$\int \frac{\left(x^{2}-1\right) d x}{x \sqrt{x^{4}+3 x^{2}+1}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeDeduce the reduction formula for \(I_{n}=\int \frac{d x}{\left(1+x^{4}\right)^{n}}\) andhenceevaluate \(I_{2}=\int \frac{d x}{\left(1+x^{4}\right)^{2}} .\)
Evaluate the following integrals: (i) \(\int \mathrm{e}^{\mathrm{x}} \frac{\left(\mathrm{x}^{2}-3 \mathrm{x}+3\right)}{(\mathrm{x}+2)^{2}} \mathrm{dx}\) (ii) \(\int \frac{\mathrm{e}^{\mathrm{x}}\left(\mathrm{x}^{2}+1\right)}{(\mathrm{x}+1)^{2}} \mathrm{dx}\) (iii) \(\int \mathrm{e}^{x} \frac{(1-x)^{2}}{\left(1+x^{2}\right)^{2}} d x\) (iv) \(\int \frac{x^{2} e^{x}}{(x+2)^{2}} d x\)
Evaluate the following integrals : $$ \int \frac{\sqrt[3]{1+x^{3}}}{x^{2}} d x $$
Evaluate the following integrals : (i) \(\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{dx}\) (ii) \(\int \mathrm{e}^{x} \frac{\left(x^{3}-x+2\right)}{\left(x^{2}+1\right)^{2}} d x\) (iii) \(\int \frac{\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)}{(\mathrm{x}+1)^{3}} \mathrm{dx}\) (iv) \(\int \mathrm{e}^{x}\left(\frac{1-x}{1+x}\right)^{2} d x\)
Evaluate the following integrals: (i) \(\int \frac{x^{7}}{\left(x^{12}-1\right)} d x\) (ii) \(\int \frac{x^{9} d x}{\left(x^{4}-1\right)^{2}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.