Chapter 1: Problem 7
Evaluate the following integrals : $$\int \frac{d x}{x^{4}+18 x^{2}+81}$$
Chapter 1: Problem 7
Evaluate the following integrals : $$\int \frac{d x}{x^{4}+18 x^{2}+81}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: $$ \int \frac{x^{2}+2 x+3}{\sqrt{\left(x^{2}+x+1\right)}} d x $$
Evaluate the following integrals : (i) \(\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{dx}\) (ii) \(\int \mathrm{e}^{x} \frac{\left(x^{3}-x+2\right)}{\left(x^{2}+1\right)^{2}} d x\) (iii) \(\int \frac{\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)}{(\mathrm{x}+1)^{3}} \mathrm{dx}\) (iv) \(\int \mathrm{e}^{x}\left(\frac{1-x}{1+x}\right)^{2} d x\)
Evaluate the following integrals: (i) \(\int \frac{\sqrt{x}+\sqrt[3]{x}}{\sqrt[4]{x^{5}}-\sqrt[6]{x^{7}}} d x\) (ii) \(\int \frac{x^{-2 / 3}}{2 x^{1 / 3}+(x-1)^{1 / 3}} d x\) (iii) \(\int \frac{d x}{x\left(2+\sqrt[3]{\frac{x-1}{x}}\right)}\)
Evaluate the following integrals : $$ \int \frac{\sqrt[3]{1+x^{3}}}{x^{2}} d x $$
\(\int\left(x^{2}-2 x+3\right) \ell n x d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.