Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Evaluate the following integrals: (i) \(\int \frac{1+\cos ^{2} x}{1+\cos 2 x} d x\) (ii) \(\int \frac{1-\tan ^{2} x}{1+\tan ^{2} x} d x\) (iii) \(\int \frac{1+\tan ^{2} x}{1+\cot ^{2} x} d x\) (iv) \(\int \frac{\cos 2 x}{\cos ^{2} x \sin ^{2} x} d x\)

Short Answer

Expert verified
In this exercise, we evaluated four different integrals using various integration techniques like substitution, trigonometric identities, and integrating by parts. The results are as follows: (i) \(\int \frac{1+\cos ^{2} x}{1+\cos 2 x} dx = \frac{1}{2}[ \tan x+x ]+C\) (ii) \(\int \frac{1-\tan ^{2} x}{1+\tan ^{2} x} dx = \frac{1}{2}\sin 2x + C\) (iii) \(\int \frac{1+\tan ^{2} x}{1+\cot ^{2} x} dx = x - \ln|1-\sin^2x| + C\) (iv) \(-\int \frac{\cos 2x}{\cos^2x\sin^2x} dx = -(\cos x + \ln|1-\cos x|-\ln|1+\cos x|+C)\)

Step by step solution

01

Integral (i) \(\int \frac{1+\cos ^{2} x}{1+\cos 2 x} d x\)

To solve this integral, we'll use the trigonometric identity \(\cos 2x = 2\cos^2x - 1\). We can rewrite the integral as: \(\int \frac{1 + \cos^2x}{1 + 2\cos^2x - 1} dx\) Now the integral becomes: \(\int \frac{1+\cos^2x}{2\cos^2x} dx = \frac{1}{2}\int\frac{1+\cos^2x}{\cos^2x} dx\) Now split the fraction: \(\frac{1}{2}\int\left(\frac{1}{\cos^2x}+\frac{\cos^2x}{\cos^2x}\right) dx = \frac{1}{2}\int\left(\frac{1}{\cos^2x}+1\right) dx\) Use the identity \(\sec^2x = \frac{1}{\cos^2x}\): \(\frac{1}{2}\int\left(\sec^2x+1\right) dx\) Now integrate: \(\frac{1}{2} \left[\int \sec^2x dx + \int 1 dx\right] = \frac{1}{2}[ \tan x+x ]+C\) So, the final result is: \(\int \frac{1+\cos ^{2} x}{1+\cos 2 x} d x = \frac{1}{2}[ \tan x+x ]+C\)
02

Integral (ii) \(\int \frac{1-\tan ^{2} x}{1+\tan ^{2} x} d x\)

To solve this integral, we can first notice that the integrand is similar to the trigonometric identity \(\cos 2x = \frac{1-\tan^2x}{1+\tan^2x}\). Rewrite the integral as: \(\int \cos 2x dx\) Now integrate: \(\int \cos 2x dx = \frac{1}{2}\sin 2x + C\) The result is: \(\int \frac{1-\tan ^{2} x}{1+\tan ^{2} x} d x = \frac{1}{2}\sin 2x + C\)
03

Integral (iii) \(\int \frac{1+\tan ^{2} x}{1+\cot ^{2} x} d x\)

For this integral, we can rewrite it in terms of sines and cosines: \(\int \frac{1+\frac{\sin^2x}{\cos^2x}}{1+\frac{\cos^2x}{\sin^2x}} dx\) Now, find a common denominator for both fractions: \(\int \frac{\frac{\sin^2x+\cos^2x}{\cos^2x}}{\frac{\sin^2x+\cos^2x}{\sin^2x}} dx\) The integrand simplifies to: \(\int \frac{\sin^2x}{\cos^2x} dx\) Now use the substitution \(u = \sin x\) and \(du = \cos x dx\): \(\int \frac{u^2}{1-u^2} du\) Now perform long division, which results in: \(\int\left(1+\frac{u^2}{1-u^2}\right) du\) Next, integrate: \(\int 1 du + \int\frac{u^2}{1-u^2} du = u -\int \frac{1-u^2+u^2}{1-u^2} du\) Now integrate the remaining term: \(u - \int \frac{1}{1-u^2} du = u - \ln|1-u^2| + C = x - \ln|1-\sin^2x| + C\) Thus, the final result is: \(\int \frac{1+\tan ^{2} x}{1+\cot ^{2} x} d x = x - \ln|1-\sin^2x| + C\)
04

Integral (iv) \(\int \frac{\cos 2x}{\cos^2x\sin^2x} dx\)

First, use the identity \(\cos 2x = 2\cos^2x - 1\) and then \(\sin^2x = 1-\cos^2x\): \(\int \frac{2\cos^2x-1}{\cos^2x (1-\cos^2x)} dx\) Now, integrate: \(\int \frac{2\cos^2x-1}{(1-\cos^2x)} dx\) Use the substitution \(u = \cos x\) and \(du = -\sin x dx\): \(-\int\frac{2u^2-1}{1-u^2} du\) Now, perform partial fractions: \(-\int\left(1-\frac{1}{1-u}+\frac{1}{1+u}\right) du = -(u+\ln|1-u|-\ln|1+u|+C)\) Now, resubstitute back: \(-\int \frac{\cos 2x}{\cos^2x\sin^2x} dx = -(\cos x + \ln|1-\cos x|-\ln|1+\cos x|+C)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free