Evaluate the following integrals :
(i) \(\int \frac{(\sqrt{x}+1)\left(x^{2}-\sqrt{x}\right)}{x
\sqrt{x}+x+\sqrt{x}} d x\)
(ii) \(\int
\frac{\sqrt{1-\mathrm{x}^{2}}-1}{\mathrm{x}}\left(\frac{1-\mathrm{x}}{\sqrt{1-\mathrm{x}^{2}}+\mathrm{x}-1}+\frac{\sqrt{1+\mathrm{x}}}{\sqrt{1+\mathrm{x}}-\sqrt{1-\mathrm{x}}}\right)
\mathrm{dx}\)
(iii) \(\int \frac{x^{4}+5 x^{3}+15 x-9}{\frac{x^{6}+3
x^{4}}+\frac{9}{x^{4}}}{\left(x^{3}-4 x+3 x^{2}-12\right) / x^{5}} d x\)
(iv) \(\int \frac{\sqrt[3]{x+\sqrt{2-x^{2}}} \sqrt[6]{1-x
\sqrt{2-x^{2}}}}{\sqrt[3]{1-x^{2}}} d x\)