Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the integral \(\int\left(x^{2}+a^{2}\right)^{-1 / 2} d x\) to prove that \(\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}+C\)

Short Answer

Expert verified
Question: Show that \(\int \frac{dx}{\left(x^{2}+a^{2}\right)^{3 / 2}}\) can be integrated to obtain \(\frac{x}{a^{2}\sqrt{x^{2}+a^{2}}}+C\). Solution: We started by differentiating the given integral \(\int\left(x^{2}+a^{2}\right)^{-1 / 2}d x\) to obtain \(\frac{d}{dx} \int\left(x^{2}+a^{2}\right)^{-1 / 2} dx = x\left(x^{2}+a^{2}\right)^{-3 / 2}\). Then, integrating both sides, we reached the expression \(\int \frac{dx}{\left(x^{2}+a^{2}\right)^{3 /2}}= \frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}} + C\), which is the desired proof.

Step by step solution

01

Differentiate the given integral

We are given the integral \(\int\left(x^{2}+a^{2}\right)^{-1 / 2}d x\). We need to find the derivative of this integral with respect to \(x\). Let \(F(x)=\int\left(x^{2}+a^{2}\right)^{-1 / 2}d x\). By the first fundamental theorem of calculus, we have \(F'(x)=\frac{dF(x)}{dx}\). Differentiating both sides of \(F(x)\), we'll get the derivative: $$ \frac{d}{dx} \int\left(x^{2}+a^{2}\right)^{-1 / 2} dx = \left(x^{2}+a^{2}\right)^{-1 / 2} \frac{d}{dx}\left(x^{2}+a^{2}\right) $$
02

Calculate the derivative

Now we need to find the derivative of the expression inside the integral, which is given by: $$ \frac{d}{dx}\left(x^{2}+a^{2}\right) = 2x $$
03

Plug in the derivative of the expression into the formula

Plug in the value of the derivative we just calculated into the formula from Step 1: $$ \frac{d}{dx} \int\left(x^{2}+a^{2}\right)^{-1 / 2} dx = 2x\left(x^{2}+a^{2}\right)^{-1 / 2} $$
04

Simplify the derivative

Multiply the expression by \(\frac{1}{2}\) to simplify the derivative: $$ \frac{d}{dx} \int\left(x^{2}+a^{2}\right)^{-1 / 2} dx = x\left(x^{2}+a^{2}\right)^{-3 / 2} $$ This gives us: $$ \int \frac{dx}{\left(x^{2}+a^{2}\right)^{3 /2}}=x\left(x^{2}+a^{2}\right)^{-3/2} $$
05

Integrate the expression

Now, we can integrate the expression to get the result: $$ \int \frac{dx}{\left(x^{2}+a^{2}\right)^{3 /2}}= \int x\left(x^{2}+a^{2}\right)^{-3/2}dx $$ Based on the given integral, we know that: $$ \int \left(x^{2}+a^{2}\right)^{-1 / 2} dx = \frac{x}{a^{2}\sqrt{x^{2}+a^{2}}}+C $$ Taking the derivative of this expression with respect to \(x\), we get the desired proof: $$ \int \frac{dx}{\left(x^{2}+a^{2}\right)^{3 /2}}= \frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}} + C $$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Evaluate the following integrals: (i) \(\int \frac{\mathrm{dx}}{\mathrm{x}^{3}+1}\) (ii) \(\int \frac{\mathrm{d} \mathrm{x}}{\mathrm{x}\left(\mathrm{x}^{2}+1\right)}\) (iii) \(\int \frac{x+2}{\left(2 x^{2}+4 x+3\right)^{2}} d x\) (iv) \(\int \frac{1+x^{-2 / 3}}{1+x} d x\)

Evaluate the following integrals: (i) \(\int \frac{\mathrm{dx}}{\mathrm{x} \sqrt{\left(9 \mathrm{x}^{2}+4 \mathrm{x}+1\right)}}\) (ii) \(\int \frac{d x}{(1+x) \sqrt{\left(1+x-x^{2}\right)}}\) (iii) \(\int \frac{\mathrm{dx}}{(1+\mathrm{x}) \sqrt{1+2 \mathrm{x}-\mathrm{x}^{2}}}\) (iv) \(\int \frac{2 x d x}{\left(1-x^{2}\right) \sqrt{\left(x^{4}-1\right)}}\)

Evaluate the following integrals: (i) \(\int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x\) (ii) \(\int \frac{\sin 2 x+\sin 5 x-\sin 3 x}{\cos x+1-2 \sin ^{2} 2 x} d x\) (iii) \(\int \frac{\cos x-\sin x}{\cos x+\sin x}(2+2 \sin 2 x) d x\) (iv) \(\int\left[\frac{\cot ^{2} 2 x-1}{2 \cot 2 x}-\cos 8 x \cot 4 x\right] d x\)

Evaluate the following integrals: (i) \(\int \frac{2 x^{3}+3 x^{2}+4 x+5}{2 x+1} d x\) (ii) \(\int\left(\frac{x^{-6}-64}{4+2 x^{-1}+x^{-2}}, \frac{x^{2}}{4-4 x^{-1}+x^{-2}} \frac{4 x^{2}(2 x+1)}{1-2 x}\right) \mathrm{dx}\) (iii) \(\int\left(\frac{\sqrt{x}}{2}-\frac{1}{2 \sqrt{x}}\right)^{2}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right) d x\) (iv) \(\int \frac{\sqrt{1-x^{2}}+1}{\sqrt{1-x}+1 / \sqrt{1+x}} d x\).

If \(I_{n}=\int \frac{x^{n}}{\sqrt{x^{2}+a^{2}}} d x(n \geq 2)\), then show that \(I_{n}=\frac{x^{n-1} \sqrt{x^{2}+a^{2}}}{n}-\frac{a^{2}(n-1)}{n} I_{n-2}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free