Chapter 1: Problem 6
Use the integral \(\int\left(x^{2}+a^{2}\right)^{-1 / 2} d x\) to prove that \(\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}+C\)
Chapter 1: Problem 6
Use the integral \(\int\left(x^{2}+a^{2}\right)^{-1 / 2} d x\) to prove that \(\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}+C\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \frac{\mathrm{dx}}{\mathrm{x}^{3}+1}\) (ii) \(\int \frac{\mathrm{d} \mathrm{x}}{\mathrm{x}\left(\mathrm{x}^{2}+1\right)}\) (iii) \(\int \frac{x+2}{\left(2 x^{2}+4 x+3\right)^{2}} d x\) (iv) \(\int \frac{1+x^{-2 / 3}}{1+x} d x\)
Evaluate the following integrals: (i) \(\int \frac{\mathrm{dx}}{\mathrm{x} \sqrt{\left(9 \mathrm{x}^{2}+4 \mathrm{x}+1\right)}}\) (ii) \(\int \frac{d x}{(1+x) \sqrt{\left(1+x-x^{2}\right)}}\) (iii) \(\int \frac{\mathrm{dx}}{(1+\mathrm{x}) \sqrt{1+2 \mathrm{x}-\mathrm{x}^{2}}}\) (iv) \(\int \frac{2 x d x}{\left(1-x^{2}\right) \sqrt{\left(x^{4}-1\right)}}\)
Evaluate the following integrals: (i) \(\int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x\) (ii) \(\int \frac{\sin 2 x+\sin 5 x-\sin 3 x}{\cos x+1-2 \sin ^{2} 2 x} d x\) (iii) \(\int \frac{\cos x-\sin x}{\cos x+\sin x}(2+2 \sin 2 x) d x\) (iv) \(\int\left[\frac{\cot ^{2} 2 x-1}{2 \cot 2 x}-\cos 8 x \cot 4 x\right] d x\)
Evaluate the following integrals: (i) \(\int \frac{2 x^{3}+3 x^{2}+4 x+5}{2 x+1} d x\) (ii) \(\int\left(\frac{x^{-6}-64}{4+2 x^{-1}+x^{-2}}, \frac{x^{2}}{4-4 x^{-1}+x^{-2}} \frac{4 x^{2}(2 x+1)}{1-2 x}\right) \mathrm{dx}\) (iii) \(\int\left(\frac{\sqrt{x}}{2}-\frac{1}{2 \sqrt{x}}\right)^{2}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right) d x\) (iv) \(\int \frac{\sqrt{1-x^{2}}+1}{\sqrt{1-x}+1 / \sqrt{1+x}} d x\).
If \(I_{n}=\int \frac{x^{n}}{\sqrt{x^{2}+a^{2}}} d x(n \geq 2)\), then show that \(I_{n}=\frac{x^{n-1} \sqrt{x^{2}+a^{2}}}{n}-\frac{a^{2}(n-1)}{n} I_{n-2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.