Chapter 1: Problem 6
\(\int\left(x^{2}-2 x+3\right) \ell n x d x\)
Chapter 1: Problem 6
\(\int\left(x^{2}-2 x+3\right) \ell n x d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : $$ \int x^{1 / 4}\left(2+3 x^{2}\right)^{3} d x $$
Applying Ostrogradsky's method, find the following integrals: (i) \(\int \frac{d x}{(x+1)^{2}\left(x^{2}+1\right)^{2}}\) (ii) \(\int \frac{d x}{\left(x^{4}+1\right)^{2}}\) (iii) \(\int \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)^{4}}\) (iv) \(\int \frac{x^{4}-2 x^{2}+2}{\left(x^{2}-2 x+2\right)^{2}} d x\)
Evaluate the following integrals: (i) \(\int \frac{x d x}{x^{4}-x^{2}-2}\) (ii) \(\int \frac{d x}{x\left(a+b x^{2}\right)^{2}}\) (iii) \(\int \frac{\mathrm{x}}{\left(\mathrm{x}^{2}+2\right)\left(\mathrm{x}^{2}+1\right)} \mathrm{dx}\) (iv) \(\int \frac{\left(1-x^{2}\right) d x}{x\left(1+x^{2}+x^{4}\right)}\)
Three of these six antiderivatives are elementary. Find them. (A) \(\int x \cos x d x\) (B) \(\int \frac{\cos x}{x} d x\) (C) \(\int \frac{x d x}{\ln x}\) (D) \(\int \frac{\ln x^{2}}{x} d x\) (E) \(\int \sqrt{x-1} \sqrt{x} \sqrt{x+1} d x\) (F) \(\int \sqrt{x-1} \sqrt{x+1} x d x\)
Evaluate the following integrals: (i) \(\int x \sin x \cos ^{2} x d x\) (ii) \(\int x \sec ^{2} x \tan x d x\) (iii) \(\int x \cos x \cos 2 x d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.