Chapter 1: Problem 6
Evaluate the following integrals : $$\int \frac{x d x}{x-\sqrt{x^{2}-1}}$$
Chapter 1: Problem 6
Evaluate the following integrals : $$\int \frac{x d x}{x-\sqrt{x^{2}-1}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : (i) \(\int \mathrm{e}^{\mathrm{x}}\left(\frac{1-\mathrm{x}}{1+\mathrm{x}^{2}}\right)^{2} \mathrm{dx}\) (ii) \(\int \mathrm{e}^{x} \frac{\left(x^{3}-x+2\right)}{\left(x^{2}+1\right)^{2}} d x\) (iii) \(\int \frac{\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)}{(\mathrm{x}+1)^{3}} \mathrm{dx}\) (iv) \(\int \mathrm{e}^{x}\left(\frac{1-x}{1+x}\right)^{2} d x\)
Evaluate the following integrals: (i) \(\int \frac{d x}{(1+x)^{3 / 2}+(1+x)^{1 / 2}}\) (ii) \(\int \frac{\mathrm{dx}}{\sqrt[4]{5-x}+\sqrt{5-x}}\) (iii) \(\int \frac{\mathrm{dx}}{\sqrt{(\mathrm{x}+2)}+\sqrt[4]{(\mathrm{x}+2)}}\) (iv) \(\int \frac{\sqrt{x+1}+2}{(x+1)^{2}-\sqrt{x+1}} d x\)
Let \(f(0)=0\) and \(f^{\prime}(x)=\frac{1}{\sqrt{\left(1-x^{2}\right)}}\) for
\(-1
Evaluate the following integrals: (i) \(\int \frac{\left(3 x^{2}-2\right) d x}{x^{4}-3 x^{2}-4}\) (ii) \(\int \frac{x^{2} d x}{\left(x^{2}+1\right)\left(2 x^{2}+1\right)}\) (iii) \(\int \frac{x^{2} d x}{\left(a^{2}-x^{2}\right)^{2}}\) (iv) \(\int \frac{d x}{\left(x^{2}-4 x+4\right)\left(x^{2}-4 x+5\right)}\)
Evaluate the following integrals: (i) \(\int \frac{2 x^{3}+x^{2}+4}{\left(x^{2}+4\right)^{2}} d x\) (ii) \(\int \frac{x^{3}+x^{2}-5 x+15}{\left(x^{2}+5\right)\left(x^{2}+2 x+3\right)} d x\)(iii) \(\int \frac{d x}{\left(x^{4}+2 x+10\right)^{3}}\) (iv) \(\int \frac{x^{5}-x^{4}+4 x^{3}-4 x^{2}+8 x-4}{\left(x^{2}+2\right)^{3}} d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.