Chapter 1: Problem 6
Evaluate the following integrals : $$\int \frac{\left(1+x^{2}\right) d x}{\left(1-x^{2}\right) \sqrt{\left(1-3 x^{2}+x^{4}\right)}}$$
Chapter 1: Problem 6
Evaluate the following integrals : $$\int \frac{\left(1+x^{2}\right) d x}{\left(1-x^{2}\right) \sqrt{\left(1-3 x^{2}+x^{4}\right)}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals : $$ \int x^{-1}\left(1+x^{1 / 3}\right)^{-3} d x $$
Evaluate the following integrals : $$\int \frac{d x}{x-\sqrt{x^{2}+2 x+4}}$$
Evaluate the following integrals : $$\int \frac{d x}{\sqrt{\left(2 x-x^{2}\right)^{3}}}$$
Evaluate the following integrals: $$ \int \frac{x^{2}+2 x-1}{2 x^{2}+3 x+1} d x $$
Use the formula \(\int \mathrm{e}^{a x} \mathrm{dx}=\mathrm{a}^{-1} \mathrm{e}^{\mathrm{ax}}\) to prove that (i) \(\int x e^{a x} d x=e^{a x}\left(x a^{-1}-a^{-2}\right)+C\) (ii) \(\int x^{2} e^{a x} d x=e^{a x}\left(x^{2} a^{-1}-2 x a^{-2}+2 a^{-3}\right)+C\) (iii) \(\int x e^{x} d x=e^{x}(x-1)+C\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.