Chapter 1: Problem 5
Evaluate the following integrals : $$\int \frac{x^{2}-1}{x^{2}+1} \cdot \frac{d x}{\sqrt{x^{4}+1}}$$
Chapter 1: Problem 5
Evaluate the following integrals : $$\int \frac{x^{2}-1}{x^{2}+1} \cdot \frac{d x}{\sqrt{x^{4}+1}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeAssuming that \(\int\left(\mathrm{e}^{\mathrm{x}} / \mathrm{x}\right) \mathrm{d} \mathrm{x}\) is not elementary (a theorem of Liouville), prove that \(\int 1 / \ln \mathrm{x} \mathrm{dx}\) is not elementary.
Evaluate the following integrals: (i) \(\int \mathrm{e}^{\mathrm{x}} \frac{1-\sin \mathrm{x}}{1-\cos \mathrm{x}} \mathrm{dx}\) (ii) \(\int \mathrm{e}^{x} \frac{2+\sin 2 x}{1+\cos 2 x} d x\) (iii) \(\int \frac{\mathrm{e}^{2 x}(\sin 4 x-2)}{1-\cos 4 x} d x\) (iv) \(\int \frac{\mathrm{e}^{\mathrm{x}}\left(1+\mathrm{x}+\mathrm{x}^{3}\right)}{\left(1+\mathrm{x}^{2}\right)^{3 / 2}} \mathrm{dx}\)
Two of these antiderivatives are elementary functions; find them. (A) \(\int \ln x d x\) (B) \(\int \frac{\ln x d x}{x}\) (C) \(\int \frac{d x}{\ln x}\)
From the fact that \(\int(\sin x) / x d x\) is not elementary, deduce that the following are not elementary : (A) \(\int\left(\cos ^{2} x\right) / x^{2} d x\) (B) \(\int\left(\sin ^{2} x\right) / x^{2} d x\) (C) \(\int \sin \mathrm{e}^{x} \mathrm{dx}\) (D) \(\int \cos x \ln x d x\)
\(\int x^{3} \cos 2 x d x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.