Chapter 1: Problem 5
Evaluate the following integrals: $$ \int \frac{3 x+5}{x^{2}+2 x-3} $$
Chapter 1: Problem 5
Evaluate the following integrals: $$ \int \frac{3 x+5}{x^{2}+2 x-3} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals: (i) \(\int \frac{x^{3}+x^{2}+x+3}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d\) ) (ii) \(\int \frac{d x}{x^{4}\left(x^{3}+1\right)^{2}}\) (iii) \(\int \frac{x^{7}+2}{\left(x^{2}+x+1\right)^{2}} d x\) (iv) \(\int \frac{3 x^{4}+4}{x^{2}\left(x^{2}+1\right)^{3}} d x\)
Only one of the functions \(\sqrt{x} \sqrt[3]{1-x}\) and \(\sqrt{1-x} \sqrt[3]{1-x}\) has an elementary antiderivative. Find the function.
Use the formula \(\int \mathrm{e}^{a x} \mathrm{dx}=\mathrm{a}^{-1} \mathrm{e}^{\mathrm{ax}}\) to prove that (i) \(\int x e^{a x} d x=e^{a x}\left(x a^{-1}-a^{-2}\right)+C\) (ii) \(\int x^{2} e^{a x} d x=e^{a x}\left(x^{2} a^{-1}-2 x a^{-2}+2 a^{-3}\right)+C\) (iii) \(\int x e^{x} d x=e^{x}(x-1)+C\)
Evaluate the following integrals: (i) \(\int \operatorname{cosec}^{2} x \ln \sec x d x\). (ii) \(\int \cos x \ln (\operatorname{cosec} x+\cot x) d x\) (iii) \(\int \sin x \cdot \ln (\sec x+\tan x) d x\) (iv) \(\int \sec x \cdot \ln (\sec x+\tan x) d x\)
Evaluate the following integrals: (i) \(\int \frac{d x}{x^{3} \sqrt{1-x^{2}}}\) (ii) \(\int \frac{x^{4} d x}{\left(a^{2}+x^{2}\right)^{2}}\) (iii) \(\int \frac{x^{2} d x}{\left(a+c x^{2}\right)^{7 / 2}}\) (iv) \(\int \frac{x^{3} d x}{\left(a^{2}+x^{2}\right)^{3 / 2}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.